Showing 20 articles starting at article 1
Categories: Energy: Alternative Fuels
Published New nano-device could mean your run could power your electrical wearables (via sciencedaily.com) Original source
Your early morning run could soon help harvest enough electricity to power your wearable devices, thanks to new nanotechnology.
Published New theory could improve the design and operation of wind farms (via sciencedaily.com) Original source
A new model accurately represents the airflow around rotors, even under extreme conditions. The first comprehensive model of rotor aerodynamics could improve the way turbine blades and wind farms are designed and how wind turbines are controlled.
Published Sharing risk to avoid power outages in an era of extreme weather (via sciencedaily.com) Original source
Heat waves, droughts, and fires place growing stress on the West's electric grid. New research suggests that more integrated management of electricity resources across the region could significantly reduce the risk of power outages and accelerate the transition to clean energy.
Published A method that paves the way for improved fuel cell vehicles (via sciencedaily.com) Original source
More efficient and longer-lasting fuel cells are essential for fuel cell-powered heavy-duty hydrogen vehicles to be an alternative to combustion fuelled counterparts. Researchers have developed an innovative method to study and understand how parts of fuel cells degrade over time. This is an important step towards the improved performance of fuel cells and them becoming commercially successful.
Published Measuring Martian winds with sound (via sciencedaily.com) Original source
Martian landers have been able capture measurements of wind speeds -- some gauging the cooling rate of heated materials when winds blow over them, others using cameras to image 'tell-tales' that blow in the wind -- but there's still room for improvement. Researchers now demonstrate a novel sonic anemometric system featuring a pair of narrow-band piezoelectric transducers to measure the travel time of sound pulses through Martian air. The study accounted for variables including transducer diffraction effects and wind direction.
Published Cricket physics: Science behind the modern bowler technique tricking batters (via sciencedaily.com) Original source
Researchers have started to unravel the mysteries of how near-horizontal bowling in cricket leads to such tough-to-hit balls. The team employed a wake survey rake device made of multiple tubes designed to capture the pressure downstream of the ball and examined the flow dynamics of cricket balls rotating up to 2,500 rpm in a wind tunnel. The group found that low-pressure zones expanded and intensified near the ball when spinning, while these zones shifted and diminished downstream. At higher spin rates, the low-pressure zone begins to change to a persistent bilobed shape. The results lend support to the theory that these newer bowling techniques tap into the Magnus effect.
Published Engineering researchers enhance perovskite solar cells durability with first-of-its-kind chiral-structured 'springy' interface (via sciencedaily.com) Original source
A research team has constructed an unprecedented chiral-structured interface in perovskite solar cells, which enhances the reliability and power conversion efficiency of this fast-advancing solar technology and accelerates its commercialization.
Published Stacking molecules like plates improves organic solar device performance (via sciencedaily.com) Original source
Researchers found that how well light-converting molecules stack together in a solid is important for how well they convert light into electric current. A rigid molecule that stacked well showed excellent electricity generation in an organic solar cell and photocatalyst, easily outperforming a similar flexible molecule that did not stack well. This new way of improving the design of molecules could be used to pioneer the next generation of light-converting devices.
Published Engineering researchers crack the code to boost solar cell efficiency and durability (via sciencedaily.com) Original source
Photovoltaic (PV) technologies, which convert light into electricity, are increasingly applied worldwide to generate renewable energy. Researchers have now developed a molecular treatment that significantly enhances the efficiency and durability of perovskite solar cells. Their breakthrough will potentially accelerate the large-scale production of this clean energy.
Published More electricity from the sun (via sciencedaily.com) Original source
A coating of solar cells with special organic molecules could pave the way for a new generation of solar panels. This coating can increase the efficiency of monolithic tandem cells made of silicon and perovskite while lowering their cost -- because they are produced from industrial, microstructured, standard silicon wafers.
Published New understanding of fly behavior has potential application in robotics, public safety (via sciencedaily.com) Original source
Scientists have identified an automatic behavior in flies that helps them assess wind conditions -- its presence and direction -- before deploying a strategy to follow a scent to its source. The fact that they can do this is surprising -- can you tell if there's a gentle breeze if you stick your head out of a moving car? Flies aren't just reacting to an odor with a preprogrammed response: they are responding in context-appropriate manner. This knowledge potentially could be applied to train more sophisticated algorithms for scent-detecting drones to find the source of chemical leaks.
Published Fresh light on the path to net zero (via sciencedaily.com) Original source
Researchers have used magnetic fields to reveal the mystery of how light particles split. Scientists are closer to giving the next generation of solar cells a powerful boost by integrating a process that could make the technology more efficient by breaking particles of light photons into small chunks.
Published Climate change will bring more turbulence to flights in the Northern Hemisphere, study finds (via sciencedaily.com) Original source
A type of invisible, unpredictable air turbulence is expected to occur more frequently in the Northern Hemisphere as the climate warms. Known as clear air turbulence, the phenomenon also increased in the Northern Hemisphere between 1980 and 2021.
Published Indoor solar cells that maximize the use of light energy (via sciencedaily.com) Original source
Chemists have synthesized materials that can improve solar elements for indoor use. Such photovoltaic cells, which can also be integrated into various electronic devices, generate electricity even in low-light conditions.
Published A recipe for zero-emissions fuel: Soda cans, seawater, and caffeine (via sciencedaily.com) Original source
Engineers discovered that when the aluminum in soda cans is purified and mixed with seawater, the solution produces hydrogen -- which can power an engine or fuel cell without generating carbon emissions. The reaction can be sped up by adding caffeine.
Published Better way to produce green hydrogen (via sciencedaily.com) Original source
Researchers have developed a material that shows a remarkable ability to convert sunlight and water into clean energy.
Published A single-molecule-based organic porous material with great potential for efficient ammonia storage (via sciencedaily.com) Original source
Novel porous crystalline solid shows promise as an efficient and durable material for ammonia (NH3) capture and storage, report scientists. Made through a simple reprecipitation process, the proposed organic compound can reversibly adsorb and release NH3 via simple pressurization and decompression at room temperature. Its stability and cost-effectiveness make this material a promising energy carrier for future hydrogen economies.
Published Manufacturing perovskite solar panels with a long-term vision (via sciencedaily.com) Original source
Researchers working at the forefront of an emerging photovoltaic (PV) technology are thinking ahead about how to scale, deploy, and design future solar panels to be easily recyclable. Solar panels made of perovskites may eventually play an important role amid global decarbonization efforts to reduce greenhouse gas emissions. As the technology emerges from the testing stages, it is a perfect time to think critically about how best to design the solar panels to minimize their impact on the environment decades from now.
Published 3D-printed microstructure forest facilitates solar steam generator desalination (via sciencedaily.com) Original source
Faced with the world's impending freshwater scarcity, researchers turned to solar steam generators, which are emerging as a promising device for seawater desalination. The team sought design inspiration from trees and harnessed the potential of 3D printing. They present technology for producing efficient SSGs for desalination and introduces a novel method for printing functional nanocomposites for multi-jet fusion. Their SSGs were inspired by plant transpiration and are composed of miniature tree-shaped microstructures, forming an efficient, heat-distributing forest.
Published Maximizing hydrogen peroxide formation during water electrolysis (via sciencedaily.com) Original source
When water is split electrolytically, the result is typically hydrogen -- and 'useless' oxygen. Instead of oxygen, you can also produce hydrogen peroxide, which is required for many branches of industry. This, however, requires certain reaction conditions.