Showing 20 articles starting at article 581
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Energy: Batteries
Published Imaging the smallest atoms provides insights into an enzyme's unusual biochemistry


A team has used neutron crystallography to image all of the atoms in a radical intermediate of a copper amine oxidase enzyme. They disclosed previously unknown details, such as precise conformational changes, that help to explain the enzyme's biochemistry. This work might help researchers engineer enzymes that facilitate unusual chemistry or are highly efficient at room temperature that are useful in chemical industry.
Published New recipes for origin of life may point way to distant, inhabited planets



Life on a faraway planet -- if it's out there -- might not look anything like life on Earth. But there are only so many chemical ingredients in the universe's pantry, and only so many ways to mix them. Scientists have now exploited those limitations to write a cookbook of hundreds of chemical recipes with the potential to give rise to life. Their ingredient list could focus the search for life elsewhere in the universe by pointing out the most likely conditions -- planetary versions of mixing techniques, oven temperatures and baking times -- for the recipes to come together.
Published Precisely arranging nanoparticles


In the incredibly small world of molecules, the elementary building blocks -- the atoms -- join together in a very regular pattern. In contrast, in the macroscopic world with its larger particles, there is much greater disorder when particles connect. A research team has now succeeded in achieving the same precise arrangement of atoms shown in molecules, but using nanometer-sized particles, known as 'plasmonic molecules' -- combinations of nanoscale metallic structures that have unique properties.
Published Researchers offer insights into solid-electrolyte interphases in next-gen aqueous potassium-ion batteries


Aqueous potassium-ion batteries are a promising alternative to lithium-ion batteries owing to their safety and low cost. However, not much is known about the properties of the solid-electrolyte interphases (SEI) that form between the electrode and the aqueous electrolyte. To address this knowledge gap, researchers from Japan have now conducted a study using advanced scanning electrochemical microscopy and operando electrochemical mass spectrometry. Their findings provide a deeper understanding of SEI in next-generation batteries.
Published Novel ligands for transition-metal catalysis of photoreactions


Transition metals exchange electrons with supporting ligands to form complexes that facilitate reaction catalysis in several industries, like pharmaceutical production. Both the metal center and the ligand moiety have pivotal roles in enabling catalysis. While numerous transition metal-catalyzed photoreactions have been developed, only a few new ligands have been reported. Researchers from Chiba University have now developed novel ligands to create transition metal complexes, defining new reaction capabilities.
Published Engineers grow full wafers of high-performing 2D semiconductor that integrates with state-of-the-art chips


Researchers have grown a high-performing 2D semiconductor to a full-size, industrial-scale wafer. In addition, the semiconductor material, indium selenide (InSe), can be deposited at temperatures low enough to integrate with a silicon chip.
Published New clues to the nature of elusive dark matter


A team of international researchers has uncovered further clues in the quest for insights into the nature of dark matter. The key to understanding this mystery could lie with the dark photon, a theoretical massive particle that may serve as a portal between the dark sector of particles and regular matter.
Published Golden future for thermoelectrics


Researchers discover excellent thermoelectric properties of nickel-gold alloys. These can be used to efficiently convert heat into electrical energy.
Published Carbon atoms coming together in space



Lab-based studies reveal how carbon atoms diffuse on the surface of interstellar ice grains to form complex organic compounds, crucial to reveal the chemical complexity in the universe.
Published Making hydrogen from waste plastic could pay for itself


Researchers have found a way to harvest hydrogen from plastic waste using a low-emissions method that generates graphene as a by-product, which could help offset production costs.
Published Scientists invent a bright way to upcycle plastics into liquids that can store hydrogen energy


Scientists have created a process that can upcycle most plastics into chemicals useful for energy storage, using light-emitting diodes (LEDs) and a commercially available catalyst, all at room temperature. The new process is very energy-efficient and can be easily powered by renewable energy in the future, unlike other heat-driven recycling processes like pyrolysis. Currently, only nine per cent of plastics globally are recycled and the rest are typically discarded in landfills or incinerated.
Published Pixel-by-pixel analysis yields insights into lithium-ion batteries


By mining X-ray images, researchers have made significant new discoveries about the reactivity of lithium iron phosphate, a material used in batteries for electric cars and in other rechargeable batteries.
Published Chemist uses nature as inspiration for a sustainable, affordable adhesive system


A chemist drew inspiration from the natural world, from his experiences scuba diving to studying shellfish in his lab. He has developed a sustainable adhesive system -- an alternative to toxic, permanent, traditional adhesives.
Published Charging ahead: New electrolyte goes extra mile for faster EV charging


Researchers are taking fast charging for electric vehicles, or EVs, to new extremes.
Published Researchers detail how disorder alters quantum spin liquids, forming a new phase of matter


Physicists begin to shed light on one of the most important questions regarding quantum spin liquids, and they do so by introducing a new phase of matter.
Published Researchers discover iron-targeting approaches to halt proliferation of cancer cells


Researchers discovered a new class of iron-targeting compounds that hamper the proliferation of cultured malignant cells in a laboratory setting.
Published Important connectivity of metal oxides with hydrogen


A recent article proposes a new way to understand how materials interact with hydrogen.
Published New ionic materials boost hydrogen fuel cell efficiency!


A research team has made a groundbreaking advancement in improving the efficiency of hydrogen fuel cells, which are gaining significant attention as eco-friendly next-generation energy sources.
Published Polymer that can be adapted to high and low temperature extremes created


Researchers have developed two closely related polymers that respond differently to high and low temperature thresholds, despite their similar design. The polymer pair could be used in applications in medicine, protein synthesis, protective coatings and other fields.
Published New bio-based glues form adhesive bonds that grow stronger in water


Patent-pending adhesive formulations developed from fully sustainable, bio-based components establish bonds that grow stronger when underwater or exposed to wet conditions.