Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Energy: Batteries
Published Nanosheet technology developed to boost energy storage dielectric capacitors


A research group has used nanosheet technology to develop a dielectric capacitor for advanced electronic and electrical power systems. Innovations in energy storage technology are vital for the effective use of renewable energy and the mass production of electric vehicles. The capacitor has the highest energy storage density recorded. It has a short charging time, high output, long life, and high temperature stability, making it a major advancement in technology.
Published New aluminium radical battery promises more sustainable power


Scientists are hoping to make the world's first safe and efficient non-toxic aqueous aluminum radical battery. Scientists have now reported the first stage of developing these novel batteries.
Published Scientists designed new enzyme using Antarctic bacteria and computer calculations


For the first time, researchers have succeeded in predicting how to change the optimum temperature of an enzyme using large computer calculations. A cold-adapted enzyme from an Antarctic bacterium was used as a basis.
Published Soft, ultrathin photonic material cools down wearable electronic devices



Overheating of wearable skin-like electronic devices increases the risk of skin burning and results in performance degradation. A research team has now invented a photonic material-based 'soft, ultrathin, radiative-cooling interface' that greatly enhances heat dissipation in devices, with temperature drops more than 56°C, offering an alternative for effective thermal management in advanced wearable electronics.
Published Neutrons look inside working solid-state battery to discover its key to success



Researchers have used neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry. They discovered that its excellent performance results from an extremely thin layer, across which charged lithium atoms quickly flow as they move from anode to cathode and blend into a solid electrolyte.
Published Squid-inspired soft material is a switchable shield for light, heat, microwaves



With a flick of a switch, current technologies allow you to quickly change materials from being dark to light, or cold to hot, just by blocking or transmitting specific wavelengths. But now, inspired by squid skin, researchers report a soft film that can regulate its transparency across a large range of wavelengths -- visible, infrared and microwave -- simultaneously. They demonstrated the material in smart windows and in health monitoring and temperature management applications.
Published An ingredient in toothpaste may make electric cars go farther



Scientists have developed a fluoride-containing electrolyte for lithium metal batteries that could boost the electric vehicle industry. The usefulness of this electrolyte extends to other types of advanced battery systems beyond lithium ion.
Published Towards efficient lithium--air batteries with solution plasma-based synthesis of perovskite hydroxide catalysts



CoSn(OH)6 (CSO) is an effective oxygen evolution reaction (OER) catalyst, necessary for developing next-generation lithium -- air batteries. However, current methods of synthesizing CSO are complicated and slow. Recently, an international research team synthesized CSO in a single step within 20 minutes using solution plasma to generate CSO nanocrystals with excellent OER catalytic properties. Their findings could boost the manufacturing of high energy density batteries.
Published Inside-out heating and ambient wind could make direct air capture cheaper and more efficient



Chemical engineers use coated carbon fibers and eliminate steam-based heating in their simpler design, which also can be powered by wind energy.
Published Energy harvesting via vibrations: Researchers develop highly durable and efficient device



An international research group has engineered a new energy-generating device by combining piezoelectric composites with carbon fiber-reinforced polymer (CFRP), a commonly used material that is both light and strong. The new device transforms vibrations from the surrounding environment into electricity, providing an efficient and reliable means for self-powered sensors.
Published Aluminium-ion batteries with improved storage capacity



Scientists develop positive electrode material using an organic redox polymer based on phenothiazine. Aluminium-ion batteries containing this material stored an unprecedented 167 milliampere hours per gram, outperforming batteries using graphite as electrode material. Aluminium-ion batteries are considered a promising alternative to conventional batteries that use scarce raw materials such as lithium.
Published All-electric rideshare fleet could reduce carbon emissions, increase traffic issues



Two major ridesharing companies have promised all-electric fleets by 2030 in an effort to reduce their carbon footprint. To understand additional impacts of this transition, researchers conducted life-cycle comparisons of battery-powered electric vehicle fleets to a gas-powered one, using real-world rideshare data. They found up to a 45% reduction in greenhouse gas emissions from full electrification; however, traffic problems and air pollution could increase.
Published A novel, completely solid, rechargeable air battery



Solid-state batteries use solid electrodes and solid electrolytes, unlike the more commonly known lithium-ion batteries, which use liquid electrolytes. Solid-state batteries overcome various challenges associated with liquid-based batteries, such as flammability, limited voltage, unstable reactants, and poor long-term cyclability and strength. Making advances in this field, researchers recently demonstrated an all-solid-state rechargeable air battery composed of a redox-active organic negative electrode and a proton-conductive polymer electrolyte.
Published Megawatt electrical motor designed by engineers could help electrify aviation



Aerospace engineers designed a 1-megawatt electrical motor that is a stepping stone toward electrifying the largest aircraft.
Published Sustainable technique to manufacture chemicals



A newly published study details a novel mechanochemistry method that can produce chemicals using less energy and without the use of solvents that produce toxic waste.
Published New study could help unlock 'game-changing' batteries for electric vehicles and aviation



Researchers have revealed the mechanisms that cause lithium metal solid-state batteries to fail. The new insights could help overcome the technical issues with solid-state batteries, unlocking a game-changing technology for electric vehicles and aviation.
Published Scientists use seaweed to create new material that can store heat for reuse



Scientists have created a new material derived from seaweed that can store heat for re-use. It could be used to capture summer sun for use in winter, or to store heat from industry that currently goes up the chimney, potentially slashing carbon emissions. The material is in the form of small beads made from alginate, which is cheap, abundant and non-toxic. It stores heat four times more efficiently than a previous material the team had developed.
Published 'Heat highways' could keep electronics cool



As smart electronic devices become smaller and more powerful, they can generate a lot of heat, leading to slower processing times and sudden shutdowns. Now researchers use an electrospinning approach to produce a new nanocomposite film. In tests, the film dissipated heat four times more efficiently than similar materials, showing that it could one day be used to keep electronics cool.
Published Researchers finds a way to reduce the overheating of semiconductor devices



Scientists have identified a method for improving the thermal conductivity of thin metal films in semiconductors using surface waves for the first time in the world.
Published Thermal energy stored by land masses has increased significantly



There are many effects of climate change. Perhaps the most broadly known is global warming, which is caused by heat building up in various parts of the Earth system, such as the atmosphere, the ocean, the cryosphere and the land. 89 percent of this excess heat is stored in the oceans, with the rest in ice and glaciers, the atmosphere and land masses (including inland water bodies). An international research team has now studied the quantity of heat stored on land, showing the distribution of land heat among the continental ground, permafrost soils, and inland water bodies. The calculations show that more than 20 times as much heat has been stored there since the 1960s, with the largest increase being in the ground.