Showing 20 articles starting at article 61

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Thermodynamics, Energy: Batteries

Return to the site home page

Chemistry: Thermodynamics Physics: General
Published

Pushing an information engine to its limits      (via sciencedaily.com)     Original source 

The molecules that make up the matter around us are in constant motion. What if we could harness that energy and put it to use? Over 150 years ago Maxwell theorized that if molecules' motion could be measured accurately, this information could be used to power an engine. Until recently this was a thought experiment, but technological breakthroughs have made it possible to build working information engines in the lab. Researchers have now teamed up to build an information engine and test its limits.

Chemistry: General Chemistry: Organic Chemistry Energy: Batteries Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Electrified charcoal 'sponge' can soak up CO2 directly from the air      (via sciencedaily.com)     Original source 

Researchers have developed a low-cost, energy-efficient method for making materials that can capture carbon dioxide directly from the air. Researchers used a method similar to charging a battery to instead charge activated charcoal, which is often used in household water filters.

Chemistry: Thermodynamics Energy: Technology Environmental: General Geoscience: Environmental Issues
Published

Overcoming barriers to heat pump adoption in cold climates and avoiding the 'energy poverty trap'      (via sciencedaily.com)     Original source 

Converting home heating systems from natural gas furnaces to electric heat pumps is seen as a way to address climate change by reducing greenhouse gas emissions.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Researchers create materials with unique combo of stiffness, thermal insulation      (via sciencedaily.com)     Original source 

Researchers have demonstrated the ability to engineer materials that are both stiff and capable of insulating against heat. This combination of properties is extremely unusual and holds promise for a range of applications, such as the development of new thermal insulation coatings for electronic devices.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries
Published

Polymeric films protect anodes from sulfide solid electrolytes      (via sciencedaily.com)     Original source 

Researchers unveil the interaction between polymeric materials and sulfide solid electrolytes.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Performance of eco-friendly cooling applications enhanced      (via sciencedaily.com)     Original source 

Researchers have developed a sustainable and controllable strategy to manipulate interfacial heat transfer, paving the way for improving the performance of eco-friendly cooling in various applications such as electronics, buildings and solar panels.

Chemistry: General Energy: Batteries Energy: Technology
Published

'The magic of making electricity from metals and air' The vexing carbonate has achieved it!      (via sciencedaily.com)     Original source 

Team develops a high-energy, high-efficiency all-solid-state Na-air battery platform.

Chemistry: Thermodynamics Energy: Nuclear Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Breakthrough discovery uses engineered surfaces to shed heat      (via sciencedaily.com)     Original source 

Splash a few drops of water on a hot pan and if the pan is hot enough, the water will sizzle and the droplets of water seem to roll and float, hovering above the surface. The temperature at which this phenomenon, called the Leidenfrost effect, occurs is predictable, usually happening above 230 degrees Celsius. A team has now discovered a method to create the aquatic levitation at a much lower temperature.

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Batteries Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Physics: General Physics: Optics
Published

Renewable grid: Recovering electricity from heat storage hits 44% efficiency      (via sciencedaily.com)     Original source 

Closing in on the theoretical maximum efficiency, devices for turning heat into electricity are edging closer to being practical for use on the grid, according to new research.

Chemistry: General Energy: Batteries Energy: Technology Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Iron could be key to less expensive, greener lithium-ion batteries, research finds      (via sciencedaily.com)     Original source 

Chemistry researchers are hoping to spark a green battery revolution by showing that iron instead of cobalt and nickel can be used as a cathode material in lithium-ion batteries.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries
Published

New milestone for lithium metal batteries      (via sciencedaily.com)     Original source 

Scientists develop a porous structures for lithium metal batteries.

Chemistry: Thermodynamics Engineering: Nanotechnology Offbeat: General Physics: General Physics: Quantum Computing
Published

Strings that can vibrate forever (kind of)      (via sciencedaily.com)     Original source 

Researchers have engineered string-like resonators capable of vibrating longer at ambient temperature than any previously known solid-state object -- approaching what is currently only achievable near absolute zero temperatures. Their study pushes the edge of nanotechnology and machine learning to make some of the world's most sensitive mechanical sensors.

Chemistry: Biochemistry Energy: Batteries
Published

Batteries: Modeling tomorrow's materials today      (via sciencedaily.com)     Original source 

Which factors determine how quickly a battery can be charged? Microstructural models have helped researchers discover and investigate new electrode materials. When sodium-nickel-manganese oxide is used as cathode material in sodium-ion batteries, simulations reveal modifications of the crystal structure during charging. These modifications lead to an elastic deformation, as a result of which capacity decreases.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Technology Engineering: Nanotechnology
Published

Powering wearable devices with high-performing carbon nanotube yarns      (via sciencedaily.com)     Original source 

Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.

Chemistry: Biochemistry Chemistry: Thermodynamics
Published

A powerful tool speeds success in achieving highly efficient thermoelectric materials      (via sciencedaily.com)     Original source 

Thermoelectric materials could play an important role in the clean energy transition, as they can produce electricity from sources of heat that would otherwise go to waste. Researchers report a new approach to efficiently predict when thermoelectric materials will have improved performance in converting heat into electricity.

Chemistry: General Energy: Batteries Environmental: General Geoscience: Geochemistry
Published

Carbon-capture batteries developed to store renewable energy, help climate      (via sciencedaily.com)     Original source 

Researchers are developing battery technologies to fight climate change in two ways, by expanding the use of renewable energy and capturing airborne carbon dioxide. Researchers recently created and tested two different formulations for batteries that store renewable energy; when the energy is later used, an electrochemical reaction converts industrial carbon dioxide emissions into a solid form that has the potential to be used in other products.

Chemistry: General Energy: Batteries Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Making batteries takes a lot of lithium: Some could come from gas well wastewater      (via sciencedaily.com)     Original source 

A new analysis suggests that if it could be extracted with complete efficiency, lithium from the wastewater of Marcellus shale gas wells could supply up to 40% of the country's demand.

Chemistry: Thermodynamics Energy: Technology Environmental: General Geoscience: Environmental Issues
Published

Using AI to improve building energy use and comfort      (via sciencedaily.com)     Original source 

Researchers have developed a new method that can lead to significant energy savings in buildings. The team identified 28 major heat loss regions in a multi-unit residential building with the most severe ones being at wall intersections and around windows. A potential energy savings of 25 per cent is expected if 70 per cent of the discovered regions are fixed.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels Environmental: General
Published

Scientists generate heat over 1,000 degrees Celsius with solar power instead of fossil fuel      (via sciencedaily.com)     Original source 

Instead of burning fossil fuels to smelt steel and cook cement, researchers in Switzerland want to use heat from the sun. The proof-of-concept study uses synthetic quartz to trap solar energy at temperatures over 1,000 C (1,832 F), demonstrating the method's potential role in providing clean energy for carbon-intensive industries.