Showing 20 articles starting at article 341
< Previous 20 articles Next 20 articles >
Categories: Energy: Alternative Fuels, Energy: Batteries
Published Calcium rechargeable battery with long cycle life



With the use of electric vehicles and grid-scale energy storage systems on the rise, the need to explore alternatives to lithium-ion batteries has never been greater. Researchers have recently developed a prototype calcium metal rechargeable battery capable of 500 cycles of repeated charge-discharge -- the benchmark for practical use. The breakthrough was made thanks to the development of a copper sulfide nanoparticle/carbon composite cathode and a hydride-based electrolyte.
Published Flexing crystalline structures provide path to a solid energy future



Researchers have uncovered the atomic mechanisms that make a class of compounds called argyrodites attractive candidates for both solid-state battery electrolytes and thermoelectric energy converters. The discoveries -- and the machine learning approach used to make them -- could help usher in a new era of energy storage for applications such as household battery walls and fast-charging electric vehicles.
Published New supply chain model to empower seabound hydrogen economy



A team of researchers has created a new supply chain model which could empower the international hydrogen renewable energy industry.
Published Demystifying vortex rings in nuclear fusion, supernovae



Better understanding the formation of swirling, ring-shaped disturbances -- known as vortex rings -- could help nuclear fusion researchers compress fuel more efficiently, bringing it closer to becoming a viable energy source. A mathematical model linking these vortices with more pedestrian types, like smoke rings, could help engineers control their behavior in power generation and more.
Published An electric vehicle battery for all seasons



Scientists have developed a fluorine-containing electrolyte for lithium-ion batteries whose charging performance remains high in frigid regions and seasons. They also determined why it is so effective.
Published Driving on sunshine: Clean, usable liquid fuels made from solar power



Researchers have developed a solar-powered technology that converts carbon dioxide and water into liquid fuels that can be added directly to a car's engine as drop-in fuel.
Published Watch these cells rapidly create protrusions for exploration and movement



In order to move, cells must be able to rapidly change shape. A team of researchers show that cells achieve this by storing extra 'skin' in folds and bumps on their surface. This cell surface excess can be rapidly deployed to cover temporary protrusions and then folded away for next time.
Published New priming method improves battery life, efficiency



Engineers have developed a readily scalable method to optimize a silicon anode priming method that increases lithium-ion battery performance by 22% to 44%.
Published Unlocking the power of photosynthesis for clean energy production



Researchers are embarking on a groundbreaking project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst. By leveraging the unique properties of microorganisms and nanomaterials, the system has the potential to replace current approaches that derive hydrogen from fossil fuels, revolutionizing the way hydrogen fuel is produced and unlocking a powerful source of renewable energy.
Published Extending the life of a lithium metal anode using a protective layer made of an extremely tough gel electrolyte



A research team has succeeded in substantially improving the cycling performance of a lithium metal battery by developing a mechanically very strong polymeric gel electrolyte and integrating it into the battery as a layer to protect the lithium metal anode. This achievement may greatly facilitate efforts to put lithium metal anodes -- a potentially very high performance anode material -- into practical use.
Published Exciton fission: One photon in, two electrons out



Photovoltaics, the conversion of light to electricity, is a key technology for sustainable energy. Since the days of Max Planck and Albert Einstein, we know that light as well as electricity are quantized, meaning they come in tiny packets called photons and electrons. In a solar cell, the energy of a single photon is transferred to a single electron of the material, but no more than one. Only a few molecular materials like pentacene are an exception, where one photon is converted to two electrons instead. This excitation doubling, which is called exciton fission, could be extremely useful for high-efficiency photovoltaics, specifically to upgrade the dominant technology based on silicon. Researchers have now deciphered the first step of this process by recording an ultrafast movie of the photon-to-electricity conversion process, resolving a decades-old debate about the mechanism of the process.
Published Researchers develop an additive to efficiently improve the efficiency and stability of perovskite solar cells



Perovskite solar cells (PVSCs) are a promising alternative to traditional silicon-based solar cells because of their high power-conversion efficiency and low cost. However, one of the major challenges in their development has been achieving long-term stability. Recently, a research team made a breakthrough by developing an innovative multifunctional and non-volatile additive which can improve the efficiency and stability of perovskite solar cells by modulating perovskite film growth. This simple and effective strategy has great potential for facilitating the commercialization of PVSCs.
Published Is the ocean a solution for ushering in the era of environmentally friendly energy?



Researchers confirm the superiority of seawater batteries that use chelating agents.
Published New chemistry can extract virgin-grade materials from wind turbine blades in one process



Researchers have developed a chemical process that can disassemble the epoxy composite of wind turbine blades and simultaneously extract intact glass fibers as well as one of the epoxy resin's original building blocks in a high quality. The recovered materials could potentially be used in the production of new blades.
Published Progress in alternative battery technology



It is not easy to make batteries cheap, efficient, durable, safe and environmentally friendly at the same time. Researchers have now succeeded in uniting all of these characteristics in zinc metal batteries.
Published Outstanding performance of organic solar cell using tin oxide



Organic solar cells have a photoactive layer that is made from polymers and small molecules. The cells are very thin, can be flexible, and are easy to make. However, the efficiency of these cells is still much below that of conventional silicon-based ones. Applied physicists have now fabricated an organic solar cell with an efficiency of over 17 percent, which is in the top range for this type of material. It has the advantage of using an unusual device structure that is produced using a scalable technique.
Published It's not as difficult as you think to shout upwind



Why does it feel so difficult to shout upwind? The sensation is common enough to have found its way into an idiom about not being understood. Researchers wanted a scientific explanation for the phenomenon -- and there wasn't been one. They have now shown that our common sense understanding of this situation is wrong. It isn't harder to shout into the wind; it's just harder to hear yourself.
Published Transforming highways for high-speed travel and energy transport



Researchers developed a proof of concept for a superconducting highway that could transport vehicles and electricity, cooling the necessary superconductors with a pipeline of liquid hydrogen. Most magnetic levitation designs feature the superconductor inside the vehicle, which is suspended above a magnetic track. The authors decided to flip that arrangement upside down, putting the superconductor on the ground and giving each vehicle a magnet. The result is a system with multiple uses, placing it within the realm of affordability.
Published Researchers design battery prototype with fiber-shaped cathode



In a new study, researchers made a cathode, or the positive end of a battery, in the shape of a thread-like fiber. The researchers were then able to use the fiber to create a zinc-ion battery prototype that could power a wrist watch.
Published Greener batteries



Our modern rechargeable batteries, such as lithium-ion batteries, are anything but sustainable. One alternative is organic batteries with redox-organic electrode materials (OEMs), which can be synthesized from natural 'green' materials. A team has now introduced a new OEM for aqueous organic high-capacity batteries that can be easily and cheaply recycled.