Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Energy: Alternative Fuels, Energy: Batteries
Published Large band bending at SnS interface opens door for highly efficient thin-film solar cells


Tin sulfide (SnS) solar cells have shown immense promise in the rush to develop more environmentally friendly thin-film solar cells. Yet for years SnS solar cells have struggled to achieve a high conversion efficiency. To overcome this, a SnS interface exhibiting large band bending was necessary, something a research group has recently achieved.
Published A self-powered ingestible sensor opens new avenues for gut research


Engineering researchers have developed a battery-free, pill-shaped ingestible biosensing system designed to provide continuous monitoring in the intestinal environment. It gives scientists the ability to monitor gut metabolites in real time, which wasn't possible before. This could unlock a new understanding of intestinal metabolite composition, which significantly impacts human health overall.
Published Stabilizing lithium-ion batteries with microbially synthesized electrolyte additive


Lithium-ion batteries with high-energy-density cathodes are necessary to meet the energy demands of next-generation electronics and electric vehicles. At high voltages, however, the battery electrolyte undergoes excessive decomposition, compromising cathode performance. To tackle this, researchers have now synthesized a bio-based, non-toxic additive material that stabilizes the cathode by forming a passivation layer on its surface and suppressing its decomposition. Eco-friendly and low-cost, the novel compound could promote a wider utilization of bio-based resources.
Published Cooling down solar cells, naturally


Too much sun and too much heat can reduce the efficiency of photovoltaics. A solar farm with optimally spaced panels facing the correct direction could cool itself through convection using the surrounding wind. Researchers explored how to exploit the geometry of solar farms to enhance natural cooling mechanisms.
Published Researchers create method for making net-zero aviation fuel


An interdisciplinary team of researchers has developed a potential breakthrough in green aviation: a recipe for a net-zero fuel for planes that will pull carbon dioxide (CO2) out of the air.
Published Nanoengineers develop a predictive database for materials


Nanoengineers have developed an AI algorithm that predicts the structure and dynamic properties of any material -- whether existing or new -- almost instantaneously. Known as M3GNet, the algorithm was used to develop matterverse.ai, a database of more than 31 million yet-to-be-synthesized materials with properties predicted by machine learning algorithms. Matterverse.ai facilitates the discovery of new technological materials with exceptional properties.
Published Simple semiconductor solutions could boost solar energy generation and enable better space probes


A 'simple' tweak to perovskite solar cells during the fabrication stage could help to unlock the untold potential of the renewable energy source, according to new research.
Published Scientists convert waste paper into battery parts for smartphones and electric vehicles


Scientists have developed a technique to convert waste paper, from single-use packaging and bags, and cardboard boxes, into a crucial component of lithium-ion batteries. Through a process called carbonisation which converts paper into pure carbon, the researchers turned the paper's fibers into electrodes, which can be made into rechargeable batteries that power mobile phones, medical equipment, and electric vehicles.
Published New insights into energy loss open doors for one up-and-coming solar tech


A new method for describing energy loss in organic solar cells has paved the way for building better and more efficient devices.
Published Engineers solve a mystery on the path to smaller, lighter batteries


A new discovery could finally usher the development of solid-state lithium batteries, which would be more lightweight, compact, and safe than current lithium batteries. The growth of metallic filaments called dendrites within the solid electrolyte has been a longstanding obstacle, but the new study explains how dendrites form and how to divert them.
Published Offshore wind farms may harm seabirds, but scientists see potential for net positive impact


The development of offshore wind energy is expanding globally, with the potential to be an important source of clean renewable energy. Yet offshore wind farms pose significant risks to seabirds and other marine wildlife. A new study outlines a framework for addressing the impacts of offshore wind farms on marine bird populations and highlights conservation strategies that could potentially more than offset those impacts.
Published How fine bubbles lead to more efficient catalysts


Catalysts are of utmost relevance for the production of chemicals and energy storage with hydrogen. Researchers have now discovered that the formation of bubbles in the pores of a catalyst can be essential for its activity. Their findings help to optimize catalyst materials for reactions in which gases are formed from liquids -- and which play a central role in a future green hydrogen economy.
Published New discoveries made about a promising solar cell material, thanks to new microscope


A team of scientists has developed a new characterization tool that allowed the scientists to gain unique insight into a possible alternative material for solar cells.
Published Understanding a cerium quirk could help advance grid-scale energy storage


An explanation for why flow batteries using the metal cerium in a sulfuric acid electrolyte fall short on voltage could pave the way for better battery chemistry.
Published How photoelectrodes change in contact with water


Every green leaf is able to convert solar energy into chemical energy, storing it in chemical compounds. However, an important sub-process of photosynthesis can already be technically imitated -- solar hydrogen production: Sunlight generates a current in a so-called photoelectrode that can be used to split water molecules. This produces hydrogen, a versatile fuel that stores solar energy in chemical form and can release it when needed.
Published Putting the brakes on lithium-ion batteries to prevent fires


Lithium-ion (Li-ion) batteries are used to power everything from smart watches to electric vehicles, thanks to the large amounts of energy they can store in small spaces. When overheated, however, they're prone to catching fire or even exploding. But recent research offers a possible solution with a new technology that can swiftly put the brakes on a Li-ion battery, shutting it down when it gets too hot.
Published Improving the performance of electrodeless plasma thrusters for space propulsion


Space missions already use electric propulsion devices, where electromagnetic fields are utilized to generate the thrust of spacecraft. One such electrodeless device, which harnesses radio frequency (rf) to generate plasma and a magnetic nozzle (MN) to channel and accelerate plasma, has shown immense promise in pushing the boundaries of space travel. But scientists have so far failed to achieve efficient conversion of the rf power to thrust energy. Now, a researcher has achieved a stunning 30% conversion efficiency.
Published Previously unseen processes reveal path to better rechargeable battery performance


To design better rechargeable ion batteries, engineers and chemists have collaborated to combine a powerful new electron microscopy technique and data mining to visually pinpoint areas of chemical and physical alteration within ion batteries.
Published Ultrathin solar cells promise improved satellite performance


As low Earth orbit becomes more cluttered, it becomes increasingly necessary to use middle Earth orbits, and radiation-tolerant cell designs will be needed. Making photovoltaics thinner should increase their longevity because the charge carriers have less far to go during their shortened lifetimes. Scientists propose a radiation-tolerant photovoltaic cell design that features an ultrathin layer of light-absorbing material. Compared to thicker cells, nearly 3.5 times less cover glass is needed for the ultra-thin cells to deliver the same amount of power after 20 years of operation.
Published Shining new light on solar cell development


An increase in the efficiency of solar panels may be on the horizon, as new research reduces their current limitations.