Showing 20 articles starting at article 61
< Previous 20 articles Next 20 articles >
Categories: Energy: Alternative Fuels, Energy: Batteries
Published Enhancing nanofibrous acoustic energy harvesters with artificial intelligence



Scientists have employed artificial intelligence techniques to improve the design and production of nanofibers used in wearable nanofiber acoustic energy harvesters (NAEH). These acoustic devices capture sound energy from the environment and convert it into electrical energy, which can then be applied in useful devices, such as hearing aids.
Published New method makes hydrogen from solar power and agricultural waste



Engineers have helped design a new method to make hydrogen gas from water using only solar power and agricultural waste such as manure or husks. The method reduces the energy needed to extract hydrogen from water by 600%, creating new opportunities for sustainable, climate-friendly chemical production.
Published Polymeric films protect anodes from sulfide solid electrolytes



Researchers unveil the interaction between polymeric materials and sulfide solid electrolytes.
Published Wind farms are cheaper than you think -- and could have prevented Fukushima, says global review



Offshore wind could have prevented the Fukushima disaster, according to a review of wind energy.
Published What are the risks of hydrogen vehicles in tunnels?



A team has analyzed the risk and damage potential of hydrogen vehicles in tunnels and derived recommendations. Their conclusion? Any damage would be extensive, but its occurrence is unlikely.
Published 'The magic of making electricity from metals and air' The vexing carbonate has achieved it!



Team develops a high-energy, high-efficiency all-solid-state Na-air battery platform.
Published Renewable grid: Recovering electricity from heat storage hits 44% efficiency



Closing in on the theoretical maximum efficiency, devices for turning heat into electricity are edging closer to being practical for use on the grid, according to new research.
Published Iron could be key to less expensive, greener lithium-ion batteries, research finds



Chemistry researchers are hoping to spark a green battery revolution by showing that iron instead of cobalt and nickel can be used as a cathode material in lithium-ion batteries.
Published New milestone for lithium metal batteries



Scientists develop a porous structures for lithium metal batteries.
Published Batteries: Modeling tomorrow's materials today



Which factors determine how quickly a battery can be charged? Microstructural models have helped researchers discover and investigate new electrode materials. When sodium-nickel-manganese oxide is used as cathode material in sodium-ion batteries, simulations reveal modifications of the crystal structure during charging. These modifications lead to an elastic deformation, as a result of which capacity decreases.
Published New data-driven model rapidly predicts dehydrogenation barriers in solid-state materials



Researchers have developed a groundbreaking data-driven model to predict the dehydrogenation barriers of magnesium hydride, a promising material for solid-state hydrogen storage. This advancement holds significant potential for enhancing hydrogen storage technologies, a crucial component in the transition to sustainable energy solutions.
Published More efficient bioethanol production might be possible using persimmon tannin to help yeast thrive



Researchers have found that persimmon tannin, known for its antioxidant properties, improves the growth of yeast in the presence of ethanol.
Published Wind farms can offset their emissions within two years



After spinning for under two years, a wind farm can offset the carbon emissions generated across its entire 30-year lifespan, when compared to thermal power plants.
Published Shedding light on perovskite hydrides using a new deposition technique



Perovskite hydrides are promising materials for various emerging energy technologies, but measuring their intrinsic hydride-ion conductivity is difficult. In a recent study, researchers address this issue using a novel laser deposition technique in an H-radical atmosphere. Using this approach, they grew thin-film single crystals of two different perovskite hydrides and characterized their hydride-ion conductivity. These efforts will bolster research on hydrogen-related materials.
Published Carbon-capture batteries developed to store renewable energy, help climate



Researchers are developing battery technologies to fight climate change in two ways, by expanding the use of renewable energy and capturing airborne carbon dioxide. Researchers recently created and tested two different formulations for batteries that store renewable energy; when the energy is later used, an electrochemical reaction converts industrial carbon dioxide emissions into a solid form that has the potential to be used in other products.
Published Making batteries takes a lot of lithium: Some could come from gas well wastewater



A new analysis suggests that if it could be extracted with complete efficiency, lithium from the wastewater of Marcellus shale gas wells could supply up to 40% of the country's demand.
Published Promising new development in solar cell technology



Researchers who contributed to the development of record-breaking solar cells a few years ago, expanded their invention. The self-assembled monolayers can now be applied not only in inverted but also in regular structure perovskite solar cells.
Published Scientists generate heat over 1,000 degrees Celsius with solar power instead of fossil fuel



Instead of burning fossil fuels to smelt steel and cook cement, researchers in Switzerland want to use heat from the sun. The proof-of-concept study uses synthetic quartz to trap solar energy at temperatures over 1,000 C (1,832 F), demonstrating the method's potential role in providing clean energy for carbon-intensive industries.
Published Eco-friendly and affordable battery for low-income countries



A battery made from zinc and lignin that can be used over 8000 times. This has been developed with a vision to provide a cheap and sustainable battery solution for countries where access to electricity is limited.
Published Manganese sprinkled with iridium: a quantum leap in green hydrogen production



Researchers report a new method that reduces the amount of iridium needed to produce hydrogen from water by 95%, without altering the rate of hydrogen production. This breakthrough could revolutionize our ability to produce ecologically friendly hydrogen and help usher in a carbon-neutral hydrogen economy.