Showing 20 articles starting at article 441
< Previous 20 articles Next 20 articles >
Categories: Energy: Batteries, Space: Structures and Features
Published New exoplanet discovery builds better understanding of planet formation


An international team of scientists have discovered an unusual Jupiter-sized planet orbiting a low-mass star called TOI-4860, located in the Corvus constellation.
Published James Webb Space Telescope captures stunning images of the Ring Nebula


NASA's James Webb Space Telescope has recorded breath-taking new images of the iconic Ring Nebula, also known as Messier 57.
Published Gravitational arcs in 'El Gordo' galaxy cluster


A new image of the galaxy cluster known as 'El Gordo' is revealing distant and dusty objects never seen before, and providing a bounty of fresh science. The infrared image displays a variety of unusual, distorted background galaxies that were only hinted at in previous Hubble Space Telescope images.
Published Faster thin film devices for energy storage and electronics


An international research team reported the first realization of single-crystalline T-Nb2O5 thin films having two-dimensional (2D) vertical ionic transport channels, which results in a fast and colossal insulator-metal transition via Li ion intercalation through the 2D channels.
Published Cracking in lithium-ion batteries speeds up electric vehicle charging


Rather than being solely detrimental, cracks in the positive electrode of lithium-ion batteries reduce battery charge time, research shows. This runs counter to the view of many electric vehicle manufacturers, who try to minimize cracking because it decreases battery longevity.
Published Energy-storing supercapacitor from cement, water, black carbon


Engineers have created a 'supercapacitor' made of ancient, abundant materials, that can store large amounts of energy. Made of just cement, water, and carbon black (which resembles powdered charcoal), the device could form the basis for inexpensive systems that store intermittently renewable energy, such as solar or wind energy.
Published Solar batteries: New material makes it possible to simultaneously absorb light and store energy


Researchers are making progress on the design of a solar battery made from an abundant, non-toxic and easily synthesized material composed of 2D carbon nitride.
Published Hubble sees evaporating planet getting the hiccups


A young planet whirling around a petulant red dwarf star is changing in unpredictable ways orbit-by-orbit. It is so close to its parent star that it experiences a consistent, torrential blast of energy, which evaporates its hydrogen atmosphere -- causing it to puff off the planet.
Published Listen to a star 'twinkle'



Many people know that stars appear to twinkle because our atmosphere bends starlight as it travels to Earth. But stars also have an innate 'twinkle' -- caused by rippling waves of gas on their surfaces -- that is imperceptible to current Earth-bound telescopes. In a new study, researchers developed the first 3D simulations of energy rippling from a massive star's core to its outer surface. Using these new models, the researchers determined, for the first time, how much stars should innately twinkle.
Published Using cosmic weather to study which worlds could support life


As the next generation of giant, high-powered observatories begin to come online, a new study suggests that their instruments may offer scientists an unparalleled opportunity to discern what weather may be like on far-away exoplanets.
Published Webb snaps highly detailed infrared image of actively forming stars



Young stars are rambunctious! NASA's James Webb Space Telescope has captured the 'antics' of a pair of actively forming young stars, known as Herbig-Haro 46/47, in high-resolution near-infrared light. To find them, trace the bright pink and red diffraction spikes until you hit the center: The stars are within the orange-white splotch. They are buried deeply in a disk of gas and dust that feeds their growth as they continue to gain mass. The disk is not visible, but its shadow can be seen in the two dark, conical regions surrounding the central stars.
Published New planetary formation findings


Astronomers have discovered new evidence of how planets as massive as Jupiter can form.
Published Astronomers reveal new features of galactic black holes


An international team of scientists, including astrophysicists, report on a dedicated observational campaign on the Galactic microquasar dubbed GRS 1915+105. The team revealed features of a microquasar system that have never before been seen. Using the massive Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China, astronomers discovered a quasi-periodic oscillation (QPO) signal in the radio band for the first time from any microquasar systems.
Published Dark energy camera captures galaxies in lopsided tug of war, a prelude to merger


The spiral galaxy NGC 1532, also known as Haley's Coronet, is caught in a lopsided tug of war with its smaller neighbor, the dwarf galaxy NGC 1531.
Published New image reveals secrets of planet birth


Astronomers have gained new clues about how planets as massive as Jupiter could form. Researchers have detected large dusty clumps, close to a young star, that could collapse to create giant planets.
Published Webb detects water vapor in rocky planet-forming zone


Water is essential for life as we know it. However, scientists debate how it reached the Earth and whether the same processes could seed rocky exoplanets orbiting distant stars. New insights may come from the planetary system PDS 70, located 370 light-years away. The star hosts both an inner disk and outer disk of gas and dust, separated by a 5 billion-mile-wide (8 billion kilometer) gap, and within that gap are two known gas-giant planets.
Published To stick or to bounce: Size determines the stickiness of cosmic dust aggregates



Current evidence suggests that microparticles of cosmic dust collide and stick together to form larger dust aggregates that may eventually combine and develop into planets. Numerical models that accurately characterize the conditions required for colliding microparticle aggregates to stick together, rather than bounce apart, are therefore paramount to understanding the evolution of planets. Recent modeling suggests that dust aggregates are less likely to stick together after a collision as the size of the aggregates increases.
Published Going the distance for better wireless charging


Accounting for radiation loss is the key to efficient wireless power transfer over long distances.
Published Galaxy J1135 reveals its water map


Researchers look at water in galaxies, its distribution and in particular its changes of state from ice to vapor, as important markers indicating areas of increased energy, in which black holes and stars are formed. A new study has now revealed the distribution of water within the J1135 galaxy, which is 12 billion light years away and formed when the Universe was a 'teenager', 1.8 billion years after the Big Bang . This water map, with unprecedented resolution, is the first ever to be obtained for such a remote galaxy. The map can help scientists to understand the physical processes taking place within J1135 and shed light on the dynamics, still partially unclear, surrounding the formation of stars, black holes and galaxies themselves.
Published Aluminum materials show promising performance for safer, cheaper, more powerful batteries


Researchers are using aluminum foil to create batteries with higher energy density and greater stability. The team's new battery system could enable electric vehicles to run longer on a single charge and would be cheaper to manufacture -- all while having a positive impact on the environment.