Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Energy: Batteries, Geoscience: Earthquakes
Published Novel electrode for improving flowless zinc-bromine battery



The flowless zinc-bromine battery (FLZBB) is a promising alternative to flammable lithium-ion batteries due to its use of non-flammable electrolytes. However, it suffers from self-discharge due to the crossover of active materials, generated at the positive graphite felt (GF) electrode, to the negative electrode, significantly affecting performance. Now, researchers have developed a novel nitrogen-doped mesoporous carbon-coated GF electrode that effectively suppresses self-discharge. This breakthrough can lead to practical applications of FLZBB in energy storage systems.
Published Completely stretchy lithium-ion battery for flexible electronics



When you think of a battery, you probably don't think stretchy. But batteries will need this shape-shifting quality to be incorporated into flexible electronics, which are gaining traction for wearable health monitors. Now, researchers report a lithium-ion battery with entirely stretchable components, including an electrolyte layer that can expand by 5000%, and it retains its charge storage capacity after nearly 70 charge/discharge cycles.
Published Making rechargeable batteries more sustainable with fully recyclable components



Rechargeable solid-state lithium batteries are an emerging technology that could someday power cell phones and laptops for days with a single charge. Offering significantly enhanced energy density, they are a safer alternative to the flammable lithium-ion batteries currently used in consumer electronics -- but they are not environmentally friendly. Current recycling methods focus on the limited recovery of metals contained within the cathodes, while everything else goes to waste.
Published BESSY II shows how solid-state batteries degrade



Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes.
Published Could high-temperature single crystals enable electric vehicles capable of traveling up to one million kilometers?



Researchers unveil a microstructure design guide to enhance the durability of lithium secondary batteries.
Published Innovative battery design: More energy and less environmental impact



A new electrolyte design for lithium metal batteries could significantly boost the range of electric vehicles. Researchers have radically reduced the amount of environmentally harmful fluorine required to stabilize these batteries.
Published A breakthrough in inexpensive, clean, fast-charging batteries



Scientists have created an anode-free sodium solid-state battery. This brings the reality of inexpensive, fast-charging, high-capacity batteries for electric vehicles and grid storage closer than ever.
Published Iceland's volcano eruptions may last decades



Scientists predict from geochemical data that Iceland is entering a new volcanic era that will last for decades, possibly centuries. Under an hour's drive from the country's capital city, the ongoing eruptions pose considerable risks for economic disruption, and they leave evacuated communities uncertain of a possible return.
Published Whoever controls electrolytes will pave the way for electric vehicles



Team develops a commercially viable and safe gel electrolyte for lithium batteries.
Published MXenes for energy storage



A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity.
Published An earthquake changed the course of the Ganges: Could it happen again?



A major earthquake 2,500 years ago caused one of the largest rivers on Earth to abruptly change course, according to a new study. The previously undocumented quake rerouted the main channel of the Ganges River in what is now densely populated Bangladesh, which remains vulnerable to big quakes.
Published The rotation of Earth's inner core has slowed, new study confirms



The new study provides unambiguous evidence that the inner core began to decrease its speed around 2010, moving slower than the Earth's surface.
Published Estimating the energy of past earthquakes from brecciation in a fault zone



In the same way that the number of rings in a tree can tell us its age, the characteristics of rocks such as breccia can tell us about the history of a region. The breccia around Ichinokawa Mine (located in Ehime prefecture) are of particular interest, as the mine is located south of the Median Tectonic Line. Researchers uncovered how breccia can provide valuable evidence to estimate the energy of past earthquakes in the area.
Published A 'liquid battery' advance



A team aims to improve options for renewable energy storage through work on an emerging technology -- liquids for hydrogen storage.
Published Looking for a new battery platform? Focus on the essentials



In facing life's many challenges, we often opt for complex approaches to finding solutions. Yet, upon closer examination, the answers are often simpler than we expect, rooted in the core "essence" of the issue. This approach was demonstrated by a research team in their publication on addressing the inherent issues of solid-state batteries.
Published Cascadia Subduction Zone, one of Earth's top hazards, comes into sharper focus



A new study has produced the first comprehensive survey of the many complex structures beneath the seafloor in the Cascadia Subduction Zone, off British Columbia, Washington, Oregon and California. It is providing scientists with key insights into how future disasters may unfold.
Published Breaking ground: Could geometry offer a new explanation for why earthquakes happen?



Researchers are adding a new wrinkle to a long-held belief about what causes earthquakes in the first place.
Published Electrified charcoal 'sponge' can soak up CO2 directly from the air



Researchers have developed a low-cost, energy-efficient method for making materials that can capture carbon dioxide directly from the air. Researchers used a method similar to charging a battery to instead charge activated charcoal, which is often used in household water filters.
Published Safeguarding urban infrastructure from subsidence and liquefaction risks



During an earthquake, soil can weaken through subsidence and liquefaction. These processes can cause buildings to collapse as the soil becomes unable to support their weight. Researchers have now developed a model that predicts soil-bearing strength and thickness to identify stable construction sites and reduce structural risks. Additionally, the model can also predict other soil conditions in real-time and function as an early-warning system to identify potential hazards.
Published Polymeric films protect anodes from sulfide solid electrolytes



Researchers unveil the interaction between polymeric materials and sulfide solid electrolytes.