Showing 20 articles starting at article 381

< Previous 20 articles        Next 20 articles >

Categories: Energy: Batteries, Geoscience: Geology

Return to the site home page

Energy: Batteries Energy: Technology Geoscience: Environmental Issues
Published

New design for lithium-air battery could offer much longer driving range compared with the lithium-ion battery      (via sciencedaily.com) 

Scientists have built and tested for a thousand cycles a lithium-air battery design that could one day be powering cars, domestic airplanes, long-haul trucks and more. Its energy storage capacity greatly surpasses that possible with lithium-ion batteries.

Geoscience: Environmental Issues Geoscience: Geology Paleontology: Climate Paleontology: Fossils Paleontology: General
Published

Early Cretaceous shift in the global carbon cycle affected both land and sea      (via sciencedaily.com) 

Geologists doing fieldwork in southeastern Utah's Cedar Mountain Formation found carbon isotope evidence that the site, though on land, experienced the same early Cretaceous carbon-cycle change recorded in marine sedimentary rocks in Europe. This ancient carbon-cycle phenomenon, known as the 'Weissert Event' was driven by large, sustained volcanic eruptions in the Southern Hemisphere that greatly increased carbon dioxide levels in the atmosphere and produced significant greenhouse climate effects over a prolonged time.

Energy: Batteries Energy: Fossil Fuels Energy: Technology Engineering: Graphene
Published

Ramping up domestic graphite production could aid the green energy transition      (via sciencedaily.com) 

Given the growing importance of graphite in energy storage technologies, a team of esearchers has conducted a study exploring ways to reduce reliance on imports of the in high-demand mineral, which powers everything from electric vehicles (EVs) to cell phones.

Geoscience: Earthquakes Geoscience: Geology
Published

Deep earthquakes could reveal secrets of the Earth's mantle      (via sciencedaily.com) 

A new study suggests there may be a layer of surprisingly fluid rock ringing the Earth, at the very bottom of the upper mantle.

Computer Science: General Energy: Batteries Energy: Technology
Published

New technology turns smartphones into RFID readers, saving costs and reducing waste      (via sciencedaily.com) 

Imagine you can open your fridge, open an app on your phone and immediately know which items are expiring within a few days. This is one of the applications that a new technology would enable.

Geoscience: Geology Offbeat: Earth and Climate Offbeat: Plants and Animals Offbeat: Space Space: General Space: The Solar System
Published

Meteorite crater discovered in French winery      (via sciencedaily.com) 

Countless meteorites have struck Earth in the past and shaped the history of our planet. It is assumed, for example, that meteorites brought with them a large part of its water. The extinction of the dinosaurs might also have been triggered by the impact of a very large meteorite. It turns out that the marketing 'gag' of the 'Domaine du Météore' winery is acutally a real impact crater. Meteorite craters which are still visible today are rare because most traces of the celestial bodies have long since disappeared again.

Geoscience: Earthquakes Geoscience: Geology Paleontology: Climate
Published

Bouncing seismic waves reveal distinct layer in Earth's inner core      (via sciencedaily.com) 

Data captured from seismic waves caused by earthquakes has shed new light on the deepest parts of Earth's inner core, according to seismologists.

Geoscience: Geology Geoscience: Oceanography Paleontology: Climate Paleontology: General
Published

Climate: Lessons from the latest global warming      (via sciencedaily.com) 

56 million years ago, the Earth experienced one of the largest and most rapid climate warming events in its history: the Paleocene-Eocene Thermal Maximum (PETM), which has similarities to current and future warming. This episode saw global temperatures rise by 5-8°C. It was marked by an increase in the seasonality of rainfalls, which led to the movement of large quantities of clay into the ocean, making it uninhabitable for certain living species. This scenario could be repeated today.

Geoscience: Geology Paleontology: Climate
Published

What do early Earth's core formation and drip coffee have in common?      (via sciencedaily.com) 

A new technique provides fresh insight into the process by which the materials that formed Earth's core descended into the depths of our planet, leaving behind geochemical traces that have long mystified scientists.

Geoscience: Earthquakes Geoscience: Geology
Published

Earthquake scientists have a new tool in the race to find the next big one      (via sciencedaily.com) 

New research on friction between faults could aid in predicting the world's most powerful earthquakes. Researchers discovered that fault surfaces bond together, or heal, after an earthquake. A fault that is slow to heal is more likely to move harmlessly, while one that heals quickly is more likely to stick until it breaks in a large, damaging earthquake. Tests allowed them to calculate a slow, harmless type of tremor. The discovery alone won't allow scientists to predict when the next big one will strike but it does give researchers a valuable new way to investigate the causes and potential for a large, damaging earthquake to happen, and guide efforts to monitor large faults like Cascadia in the Pacific Northwest.

Geoscience: Geology Geoscience: Oceanography Offbeat: Earth and Climate
Published

Better understanding on the way to a carbon-neutral economy      (via sciencedaily.com) 

What role could rifted margins play in the transition to a carbon-neutral economy? Researchers summarize the current state of knowledge about the so-called rifting of continents. Rifting is the term researchers use to describe the process by which continental plates break and new oceans are formed.

Geoscience: Geology Geoscience: Oceanography
Published

Deep-sea black carbon comes from hydrothermal vents      (via sciencedaily.com) 

Hydrothermal vents have been identified as a previously undiscovered source of dissolved black carbon in the oceans, furthering the understanding of the role of oceans as a carbon sink.

Energy: Batteries Energy: Technology
Published

Novel microscope developed to design better high-performance batteries      (via sciencedaily.com) 

A research team has developed an operando reflection interference microscope (RIM) that provides a better understanding of how batteries work, which has significant implications for the next generation of batteries.

Energy: Batteries
Published

Beyond lithium: A promising cathode material for magnesium rechargeable batteries      (via sciencedaily.com) 

Magnesium is a promising candidate as an energy carrier for next-generation batteries. However, the cycling performance and capacity of magnesium batteries need to improve if they are to replace lithium-ion batteries. To this end, a research team focused on a novel cathode material with a spinel structure. Following extensive characterization and electrochemical performance experiments, they have found a specific composition that could open doors to high-performance magnesium rechargeable batteries.

Geoscience: Earthquakes Geoscience: Geology Geoscience: Volcanoes
Published

Exact magma locations may improve volcanic eruption forecasts      (via sciencedaily.com) 

Cornell University researchers have unearthed precise, microscopic clues to where magma is stored, offering a way to better assess the risk of volcanic eruptions.

Energy: Batteries Energy: Technology Physics: Optics
Published

Controllable 'defects' improve performance of lithium-ion batteries      (via sciencedaily.com) 

Some defects can be good. A new study shows that laser-induced defects in lithium-ion battery materials improve the performance of the battery.

Energy: Batteries Energy: Technology
Published

New sodium, aluminum battery aims to integrate renewables for grid resiliency      (via sciencedaily.com) 

A new sodium battery technology shows promise for helping integrate renewable energy into the electric grid. The battery uses Earth-abundant raw materials such as aluminum and sodium.

Geoscience: Earthquakes Geoscience: Geology
Published

Scientists detect molten rock layer hidden under Earth's tectonic plates      (via sciencedaily.com) 

Scientists have discovered a new layer of partly molten rock under the Earth's crust that might help settle a long-standing debate about how tectonic plates move. The molten layer is located about 100 miles from the surface and is part of the asthenosphere, which is important for plate tectonics because it forms a relatively soft boundary that lets tectonic plates move through the mantle. The researchers found, however that the melt does not appear to notably influence the flow of mantle rocks. Instead, they say, the discovery confirms that the convection of heat and rock in the mantle are the prevailing influence on the motion of the plates.

Geoscience: Environmental Issues Geoscience: Geology Paleontology: Climate
Published

Study reveals new clues about how 'Earth's thermostat' controls climate      (via sciencedaily.com) 

Rocks, rain and carbon dioxide help control Earth's climate over thousands of years -- like a thermostat -- through a process called weathering. A new study may improve our understanding of how this thermostat responds as temperatures change.

Geoscience: Earthquakes Geoscience: Geology Geoscience: Volcanoes
Published

Looking back at the Tonga eruption      (via sciencedaily.com) 

A 'back-projection' technique reveals new details of the volcanic eruption in Tonga that literally shook the world.