Showing 20 articles starting at article 1
Categories: Energy: Batteries, Paleontology: Climate
Published Dormant capacity reserve in lithium-ion batteries detected



Lithium iron phosphate is one of the most important materials for batteries in electric cars, stationary energy storage systems and tools. It has a long service life, is comparatively inexpensive and does not tend to spontaneously combust. Energy density is also making progress. However, experts are still puzzled as to why lithium iron phosphate batteries undercut their theoretical electricity storage capacity by up to 25 per cent in practice.
Published Development of a model capable of predicting the cycle lives of high-energy-density lithium-metal batteries



Scientists have developed a model capable of predicting the cycle lives of high-energy-density lithium-metal batteries by applying machine learning methods to battery performance data. The model proved able to accurately estimate batteries' longevity by analyzing their charge, discharge and voltage relaxation process data without relying on any assumption about specific battery degradation mechanisms. The technique is expected to be useful in improving the safety and reliability of devices powered by lithium-metal batteries.
Published Scottish and Irish rocks confirmed as rare record of 'snowball Earth'



The study found that the Port Askaig Formation, composed of layers of rock up to 1.1 km thick, was likely laid down between 662 to 720 million years ago during the Sturtian glaciation -- the first of two global freezes thought to have triggered the development of complex, multicellular life.
Published Engineers design tiny batteries for powering cell-sized robots



A zinc-air microbattery could enable the deployment of cell-sized, autonomous robots for drug delivery within in the human body, as well as other applications such as locating leaks in gas pipelines.
Published Research provides a roadmap for improving electrochemical performance



A study expands understanding on how electrons move through the conductive parts of complex fluids found in electrochemical devices such as batteries. This work can help overcome existing knowledge gaps for engineers seeking to improve the performance of these devices.
Published A method that paves the way for improved fuel cell vehicles



More efficient and longer-lasting fuel cells are essential for fuel cell-powered heavy-duty hydrogen vehicles to be an alternative to combustion fuelled counterparts. Researchers have developed an innovative method to study and understand how parts of fuel cells degrade over time. This is an important step towards the improved performance of fuel cells and them becoming commercially successful.
Published New study unveils 16,000 years of climate history in the tropical Andes



Researchers highlight the roles of carbon dioxide and ocean currents as key drivers of temperature fluctuations in the tropical Andes over a 16,000 year period.
Published Millions of years for plants to recover from global warming



Catastrophic volcanic eruptions that warmed the planet millions of years ago shed new light on how plants evolve and regulate climate. Researchers reveal the long-term effects of disturbed natural ecosystems on climate in geological history and its implications for today.
Published Record-breaking recovery of rocks that originated in Earth's mantle could reveal secrets of planet's history



Scientists have recovered the first long section of rocks that originated in the Earth's mantle, the layer below the crust and the planet's largest component. The rocks will help unravel the mantle's role in the origins of life on Earth, the volcanic activity generated when it melts, and how it drives the global cycles of important elements such as carbon and hydrogen.
Published Turning unused signals such as Wi-Fi into energy for electronics



We are constantly surrounded by electromagnetic waves such as Wi-Fi. Researchers tested a device to convert this ambient energy into energy for electronic devices.
Published Carvings at ancient monument may be world's oldest calendars



Markings on a stone pillar at a 12,000 year-old archaeological site in Turkey likely represent the world's oldest solar calendar, created as a memorial to a devastating comet strike, experts suggest.
Published Antarctic-wide survey of plant life to aid conservation efforts



The first continent-wide mapping study of plant life across Antarctica reveals growth in previously uncharted areas and is set to inform conservation measures across the region. The satellite survey of mosses, lichens and algae across the continent will form a baseline for monitoring how Antarctica's vegetation responds to climate change.
Published Greenland fossil discovery reveals increased risk of sea-level catastrophe



Seeds, twigs, and insect parts found under two miles of ice confirm Greenland's ice sheet melted in the recent past, the first direct evidence that the center -- not just the edges -- of the two-mile-deep ice melted away in the recent geological past. The new research indicates that the giant ice sheet is more fragile than scientists had realized until the last few years -- and reveals increased risk of sea-level catastrophe in a warmer future.
Published How the rising earth in Antarctica will impact future sea level rise



The rising earth beneath the Antarctic Ice Sheet will likely become a major factor in future sea level rise, a new study suggests.
Published Underwater mapping reveals new insights into melting of Antarctica's ice shelves



Clues to future sea level rise have been revealed by the first detailed maps of the underside of a floating ice shelf in Antarctica. An international research team deployed an unmanned submersible beneath the Dotson Ice Shelf in West Antarctica.
Published Faster, cleaner way to extract lithium from battery waste



Researchers uncover a rapid, efficient and environmentally friendly method for selective lithium recovery using microwave radiation and a readily biodegradable solvent.
Published Scientists work to build 'wind-up' sensors



An international team of scientists has shown that twisted carbon nanotubes can store three times more energy per unit mass than advanced lithium-ion batteries. The finding may advance carbon nanotubes as a promising solution for storing energy in devices that need to be lightweight, compact, and safe, such as medical implants and sensors.
Published New battery-free technology to power electronic devices using ambient radiofrequency signals



Researchers demonstrated a novel technique to efficiently convert ambient low-power radiofrequency signals into DC power. This 'rectifier' technology can be easily integrated into energy harvesting modules to power electronic devices and sensors, enabling battery-free operation.
Published Warming has more impact than cooling on Greenland's 'firn'



A new study finds disproportionate effects of temperature shifts on an icy glacier layer.
Published Researchers develop innovative battery recycling method



A research team is tackling the environmental issue of efficiently recycling lithium ion batteries amid their increasing use.