Showing 20 articles starting at article 501

< Previous 20 articles        Next 20 articles >

Categories: Energy: Batteries, Offbeat: Computers and Math

Return to the site home page

Computer Science: General Offbeat: Computers and Math Physics: Optics
Published

The switch made from a single molecule      (via sciencedaily.com) 

Researchers have demonstrated a switch, analogous to a transistor, made from a single molecule called fullerene. By using a carefully tuned laser pulse, the researchers are able to use fullerene to switch the path of an incoming electron in a predictable way. This switching process can be three to six orders of magnitude faster than switches in microchips, depending on the laser pulses used. Fullerene switches in a network could produce a computer beyond what is possible with electronic transistors, and they could also lead to unprecedented levels of resolution in microscopic imaging devices.

Computer Science: Encryption Computer Science: General Engineering: Nanotechnology Mathematics: Puzzles Offbeat: Computers and Math Physics: Optics
Published

Chromo-encryption method encodes secrets with color      (via sciencedaily.com) 

In a new approach to security that unites technology and art, E researchers have combined silver nanostructures with polarized light to yield a range of brilliant colors, which can be used to encode messages.

Energy: Batteries Energy: Technology
Published

Novel microscope developed to design better high-performance batteries      (via sciencedaily.com) 

A research team has developed an operando reflection interference microscope (RIM) that provides a better understanding of how batteries work, which has significant implications for the next generation of batteries.

Computer Science: Artificial Intelligence (AI) Computer Science: General Offbeat: Computers and Math
Published

New AI technology could change game prep for Super Bowl teams      (via sciencedaily.com) 

New artificial intelligence technology being developed by engineers could significantly cut down on the time and cost that goes into film study for Super Bowl-bound teams (and all NFL and college football teams), while also enhancing game strategy by harnessing the power of big data.

Energy: Batteries
Published

Beyond lithium: A promising cathode material for magnesium rechargeable batteries      (via sciencedaily.com) 

Magnesium is a promising candidate as an energy carrier for next-generation batteries. However, the cycling performance and capacity of magnesium batteries need to improve if they are to replace lithium-ion batteries. To this end, a research team focused on a novel cathode material with a spinel structure. Following extensive characterization and electrochemical performance experiments, they have found a specific composition that could open doors to high-performance magnesium rechargeable batteries.

Energy: Batteries Energy: Technology Physics: Optics
Published

Controllable 'defects' improve performance of lithium-ion batteries      (via sciencedaily.com) 

Some defects can be good. A new study shows that laser-induced defects in lithium-ion battery materials improve the performance of the battery.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists make major breakthrough in developing practical quantum computers that can solve big challenges of our time      (via sciencedaily.com) 

Researchers have demonstrated that quantum bits (qubits) can directly transfer between quantum computer microchips and demonstrated this with record-breaking connection speed and accuracy. This breakthrough resolves a major challenge in building quantum computers large and powerful enough to tackle complex problems that are of critical importance to society.

Chemistry: Organic Chemistry Offbeat: Computers and Math
Published

Biosensor could lead to new drugs, sensory organs on a chip      (via sciencedaily.com) 

A synthetic biosensor that mimics properties found in cell membranes and provides an electronic readout of activity could lead to a better understanding of cell biology, development of new drugs, and the creation of sensory organs on a chip capable of detecting chemicals, similar to how noses and tongues work.

Computer Science: Artificial Intelligence (AI) Offbeat: Computers and Math
Published

AI-Powered FRIDA robot collaborates with humans to create art      (via sciencedaily.com) 

FRIDA, a robotic arm with a paintbrush taped to it, uses artificial intelligence to collaborate with humans on works of art. Ask FRIDA to paint a picture, and it gets to work putting brush to canvas. The robot uses AI models similar to those powering tools like OpenAI's ChatGPT and DALL-E 2, which generate text or an image, respectively, in response to a prompt. FRIDA simulates how it would paint an image with brush strokes and uses machine learning to evaluate its progress as it works. FRIDA's final products are impressionistic and whimsical. The brushstrokes are bold. They lack the precision sought so often in robotic endeavors. If FRIDA makes a mistake, it riffs on it, incorporating the errant splotch of paint into the end result.

Computer Science: Artificial Intelligence (AI) Computer Science: General Offbeat: Computers and Math Offbeat: Plants and Animals
Published

Can pigeons match wits with artificial intelligence?      (via sciencedaily.com) 

Can a pigeon match wits with artificial intelligence? Researchers tested pigeons' learning abilities and concluded the birds employ the same basic process, called associative learning, as the most advanced AI technologies.

Energy: Batteries Energy: Technology
Published

New sodium, aluminum battery aims to integrate renewables for grid resiliency      (via sciencedaily.com) 

A new sodium battery technology shows promise for helping integrate renewable energy into the electric grid. The battery uses Earth-abundant raw materials such as aluminum and sodium.

Engineering: Robotics Research Offbeat: Computers and Math
Published

Engineers devise a modular system to produce efficient, scalable aquabots      (via sciencedaily.com) 

Researchers developed a new approach to building deformable underwater robots, using simple repeating substructures. The team demonstrated the new system in two different example configurations, one like an eel and the other a wing-like hydrofoil.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math
Published

Interactive cyber-physical human: Generating contact-rich whole-body motions      (via sciencedaily.com) 

Performing human-like motions that involve multiple contacts is challenging for robots. In this regard, a researcher has envisioned an interactive cyber-physical human (iCPH) platform with complementary humanoid (physical twin) and simulation (digital twin) elements. iCPH combines human measurement data, musculoskeletal analysis, and machine learning for data collection and augmentation. As a result, iCPH can understand, predict, and synthesize whole-body contact motions.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Entangled atoms cross quantum network from one lab to another      (via sciencedaily.com) 

Trapped ions have previously only been entangled in one and the same laboratory. Now, teams have entangled two ions over a distance of 230 meters. The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math
Published

Legged robots need more testing before real-world use      (via sciencedaily.com) 

When it comes to the 'evolution' of mobile robots, it may be a long time before legged robots are able to safely interact in the real world, according to a new study.

Computer Science: Virtual Reality (VR) Engineering: Robotics Research Offbeat: Computers and Math
Published

Autonomous steering system keeps human drivers engaged      (via sciencedaily.com) 

Researchers have developed an automated driving system based on the concept of 'collaborative steering', which aims to increase transportation safety, efficiency, and comfort by encouraging active interaction between autonomous vehicles and their human drivers.

Computer Science: General Offbeat: Computers and Math Offbeat: Space Space: Exploration Space: The Solar System
Published

Will machine learning help us find extraterrestrial life?      (via sciencedaily.com) 

Researchers have applied a deep learning technique to a previously studied dataset of nearby stars and uncovered eight previously unidentified signals of interest.

Offbeat: Computers and Math
Published

A neuro-chip to manage brain disorders      (via sciencedaily.com) 

Researchers have combined low-power chip design, machine learning algorithms, and soft implantable electrodes to produce a neural interface that can identify and suppress symptoms of various neurological disorders.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Environmental: Biodiversity Offbeat: Computers and Math Offbeat: Earth and Climate Offbeat: Plants and Animals
Published

A fairy-like robot flies by the power of wind and light      (via sciencedaily.com) 

The loss of pollinators, such as bees, is a huge challenge for global biodiversity and affects humanity by causing problems in food production. Researchers have now developed the first passively flying robot equipped with artificial muscle. Could this artificial fairy be utilized in pollination?

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Qubits on strong stimulants      (via sciencedaily.com)     Original source 

In the global push for practical quantum networks and quantum computers, an international team of researchers has demonstrated a leap in preserving the quantum coherence of quantum dot spin qubits.