Showing 20 articles starting at article 541
< Previous 20 articles Next 20 articles >
Categories: Energy: Batteries, Offbeat: Computers and Math
Published Self-powered, printable smart sensors created from emerging semiconductors could mean cheaper, greener Internet of Things


Creating smart sensors to embed in our everyday objects and environments for the Internet of Things (IoT) would vastly improve daily life -- but requires trillions of such small devices. A professor believes that emerging alternative semiconductors that are printable, low-cost and eco-friendly could lead the way to a cheaper and more sustainable IoT.
Published Human brain organoids implanted into mouse cortex respond to visual stimuli for first time


A team of engineers and neuroscientists has demonstrated for the first time that human brain organoids implanted in mice have established functional connectivity to the animals' cortex and responded to external sensory stimuli. The implanted organoids reacted to visual stimuli in the same way as surrounding tissues, an observation that researchers were able to make in real time over several months thanks to an innovative experimental setup that combines transparent graphene microelectrode arrays and two-photon imaging.
Published Development of next-generation solid electrolyte technology, 'stable' even when exposed to the atmosphere


Engineers have announced the development of solid electrolytes with enhanced atmospheric stability.
Published Designing with DNA


Marvel at the tiny nanoscale structures emerging from labs, and it's easy to imagine you're browsing a catalog of the world's smallest pottery: itty-bitty vases, bowls, and spheres. But instead of making them from clay, the researchers designed these objects out of threadlike molecules of DNA, bent and folded into complex three-dimensional objects. These creations demonstrate the possibilities of a new open-source software program.
Published Shrinking hydrogels enlarge nanofabrication options



Researchers have developed a strategy for creating ultrahigh-resolution, complex 3D nanostructures out of various materials.
Published New X-ray imaging technique to study the transient phases of quantum materials



An international team of researchers has recently demonstrated for the first time the use of a new lensless ultrafast X-Ray method to image phase transitions. This new method enables the direct observation of the dynamics of quantum materials at the nanoscale.
Published Designing better battery electrolytes


Scientists give the lay of the land in the quest for electrolytes that could enable revolutionary battery chemistries.
Published Ingestible biobatteries could allow new view of digestive system


A new biobattery could power ingestible cameras in the small intestine.
Published New life flashed into lithium-ion anodes


Chemists use flash Joule heating to recover graphite anodes from spent lithium-ion batteries at a cost of about $118 per ton.
Published Flameproofing lithium-ion batteries with salt


A polymer-based electrolyte makes for batteries that keep working -- and don't catch fire -- when heated to over 140 degrees F.
Published New battery technology has potential to significantly reduce energy storage costs


Researchers are hoping that a new, low-cost battery which holds four times the energy capacity of lithium-ion batteries and is far cheaper to produce will significantly reduce the cost of transitioning to a decarbonized economy.
Published X-rays reveal elusive chemistry for better EV batteries


Scientists used high energy x-rays to investigate the solid-electrolyte interphase, a chemical layer in batteries that's key to stabilizing lithium metal anodes. Chemists unraveled this complex chemical mechanisms that is crucial for boosting energy density.
Published New manufacturing process produces better, cheaper cathodes for lithium-ion batteries


Researchers have developed a new method for producing a key component of lithium-ion batteries. The result is a more affordable battery from a faster, less wasteful process that uses less toxic material.
Published A self-powered ingestible sensor opens new avenues for gut research


Engineering researchers have developed a battery-free, pill-shaped ingestible biosensing system designed to provide continuous monitoring in the intestinal environment. It gives scientists the ability to monitor gut metabolites in real time, which wasn't possible before. This could unlock a new understanding of intestinal metabolite composition, which significantly impacts human health overall.
Published Stabilizing lithium-ion batteries with microbially synthesized electrolyte additive


Lithium-ion batteries with high-energy-density cathodes are necessary to meet the energy demands of next-generation electronics and electric vehicles. At high voltages, however, the battery electrolyte undergoes excessive decomposition, compromising cathode performance. To tackle this, researchers have now synthesized a bio-based, non-toxic additive material that stabilizes the cathode by forming a passivation layer on its surface and suppressing its decomposition. Eco-friendly and low-cost, the novel compound could promote a wider utilization of bio-based resources.
Published Nanoengineers develop a predictive database for materials


Nanoengineers have developed an AI algorithm that predicts the structure and dynamic properties of any material -- whether existing or new -- almost instantaneously. Known as M3GNet, the algorithm was used to develop matterverse.ai, a database of more than 31 million yet-to-be-synthesized materials with properties predicted by machine learning algorithms. Matterverse.ai facilitates the discovery of new technological materials with exceptional properties.
Published Scientists convert waste paper into battery parts for smartphones and electric vehicles


Scientists have developed a technique to convert waste paper, from single-use packaging and bags, and cardboard boxes, into a crucial component of lithium-ion batteries. Through a process called carbonisation which converts paper into pure carbon, the researchers turned the paper's fibers into electrodes, which can be made into rechargeable batteries that power mobile phones, medical equipment, and electric vehicles.
Published Engineers solve a mystery on the path to smaller, lighter batteries


A new discovery could finally usher the development of solid-state lithium batteries, which would be more lightweight, compact, and safe than current lithium batteries. The growth of metallic filaments called dendrites within the solid electrolyte has been a longstanding obstacle, but the new study explains how dendrites form and how to divert them.
Published Understanding a cerium quirk could help advance grid-scale energy storage


An explanation for why flow batteries using the metal cerium in a sulfuric acid electrolyte fall short on voltage could pave the way for better battery chemistry.
Published Putting the brakes on lithium-ion batteries to prevent fires


Lithium-ion (Li-ion) batteries are used to power everything from smart watches to electric vehicles, thanks to the large amounts of energy they can store in small spaces. When overheated, however, they're prone to catching fire or even exploding. But recent research offers a possible solution with a new technology that can swiftly put the brakes on a Li-ion battery, shutting it down when it gets too hot.