Showing 20 articles starting at article 481

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry, Energy: Nuclear

Return to the site home page

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Scientists found hundreds of toxic chemicals in recycled plastics      (via sciencedaily.com)     Original source 

When scientists examined pellets from recycled plastic collected in 13 countries they found hundreds of toxic chemicals, including pesticides and pharmaceuticals. Because of this, the scientists judge recycled plastics unfit for most purposes and a hinder in the attempts to create a circular economy.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Geoscience: Severe Weather
Published

New cooling ceramic can enhance energy efficiency for the construction sector and help combat global warming      (via sciencedaily.com)     Original source 

Researchers have made a significant breakthrough in developing a passive radiative cooling (PRC) material. The material, known as cooling ceramic, has achieved high-performance optical properties for energy-free and refrigerant-free cooling generation. Its cost-effectiveness, durability and versatility make it highly suitable for commercialization in numerous applications, particularly in building construction. 

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Atomic dance gives rise to a magnet      (via sciencedaily.com)     Original source 

Researchers turned a paramagnetic material into a magnet by manipulating electrons' spin via atomic motion.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Chemists image basic blocks of synthetic polymers      (via sciencedaily.com)     Original source 

Researchers have developed a new method to image polymerization catalysis reactions one monomer at a time. 

Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology Environmental: General
Published

Advances in lithium-metal batteries, paving the way for safer, more powerful devices      (via sciencedaily.com)     Original source 

The boom in phones, laptops and other personal devices over the last few decades has been made possible by the lithium-ion (Li-ion) battery, but as climate change demands more powerful batteries for electric vehicles and grid-scale renewable storage, lithium-ion technology might not be enough. Lithium-metal batteries (LMBs) have theoretical capacities an order of magnitude greater than lithium-ion, but a more literal boom has stymied research for decades.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Geochemistry
Published

Liquid metals shake up century-old chemical engineering processes      (via sciencedaily.com)     Original source 

Liquid metals could be the long-awaited solution to 'greening' the chemical industry, according to researchers who tested a new technique they hope can replace energy-intensive chemical engineering processes harking back to the early 20th century.

Energy: Nuclear Physics: General Physics: Quantum Physics
Published

Milestone moment toward development of nuclear clock      (via sciencedaily.com)     Original source 

Physicists have started the countdown on developing a new generation of timepieces capable of shattering records by providing accuracy of up to one second in 300 billion years, or about 22 times the age of the universe.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Charged 'molecular beasts' the basis for new compounds      (via sciencedaily.com)     Original source 

Mass spectrometers are high-tech machines that play an important role in our society. They are highly sensitive analytical instruments that are indispensable in areas such as medical diagnostics, food quality control and the detection of hazardous chemical substances. A research group is working to modify mass spectrometers so that they can be used for a completely different purpose: the chemical synthesis of new molecules.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Computer Science: General Energy: Technology
Published

Researchers develop solid-state thermal transistor for better heat management      (via sciencedaily.com)     Original source 

A team of researchers has unveiled a first-of-its-kind stable and fully solid-state thermal transistor that uses an electric field to control a semiconductor device's heat movement.  The group's study details how the device works and its potential applications. With top speed and performance, the transistor could open new frontiers in heat management of computer chips through an atomic-level design and molecular engineering. The advance could also further the understanding of how heat is regulated in the human body.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Batteries
Published

New designs for solid-state electrolytes may soon revolutionize the battery industry      (via sciencedaily.com)     Original source 

Researchers have announced a major breakthrough in the field of next-generation solid-state batteries. It is believed that their new findings will enable the creation of batteries based on a novel chloride-based solid electrolyte that exhibits exceptional ionic conductivity.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Stronger, stretchier, self-healing plastic      (via sciencedaily.com)     Original source 

An innovative plastic, stronger and stretchier than the current standard type and which can be healed with heat, remembers its shape and partially biodegradable, has been developed. They created it by adding the molecule polyrotaxane to an epoxy resin vitrimer, a type of plastic. Named VPR, the material can hold its form and has strong internal chemical bonds at low temperatures.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology
Published

Making electric vehicles last      (via sciencedaily.com)     Original source 

In the realm of electric vehicles, powered by stored electric energy, the key lies in rechargeable batteries capable of enduring multiple charge cycles. Lithium-ion batteries have been the poster child for this application. However, due to limitations in energy storage capacity and other associated challenges, the focus has shifted to an intriguing alternative known as dual-ion batteries (DIBs).

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists make breakthrough in drug discovery chemistry      (via sciencedaily.com)     Original source 

Chemists offer two new methods to develop a way to easily replace a carbon atom with a nitrogen atom in a molecule.  The findings could make it easier to develop new drugs.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Engineers develop an efficient process to make fuel from carbon dioxide      (via sciencedaily.com)     Original source 

Researchers developed an efficient process that can convert carbon dioxide into formate, a nonflammable liquid or solid material that can be used like hydrogen or methanol to power a fuel cell and generate electricity.

Energy: Nuclear Engineering: Biometric
Published

Monitoring nuclear weapons stockpiles with radio waves      (via sciencedaily.com)     Original source 

Monitoring whether states are complying with disarmament treaties is not an easy task. An international team has been exploring remote monitoring with the help of two antennas and a couple of mirrors.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Geoscience: Environmental Issues Physics: General
Published

Breakthrough synthesis method improves solar cell stability      (via sciencedaily.com)     Original source 

A new process yields 2D halide perovskite crystal layers of ideal thickness and purity through dynamic control of the crystallization process -- a key step toward ensuring device stability for optoelectronics and photovoltaics.

Chemistry: Inorganic Chemistry Physics: General
Published

New research finds stress and strain changes metal electronic structure      (via sciencedaily.com)     Original source 

New research shows that the electronic structure of metals can strongly affect their mechanical properties.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A superatomic semiconductor sets a speed record      (via sciencedaily.com)     Original source 

The search is on for better semiconductors. A team of chemists describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2. 

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Conduction electrons drive giant, nonlinear elastic response in Sr2RuO4      (via sciencedaily.com)     Original source 

The hardness of a material normally is set by the strength of chemical bonds between electrons of neighboring atoms, not by freely flowing conduction electrons. Now a team of scientists has shown that current-carrying electrons can make the lattice much softer than usual in the material Sr2RuO4.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Geoscience: Geochemistry
Published

A potentially cheaper and 'cooler' way for hydrogen transport      (via sciencedaily.com)     Original source 

Researchers have developed a new hydrogen energy carrier material capable storing hydrogen energy efficiently and potentially more cheaply. Each molecule can store one electron from hydrogen at room temperature, store it for up the three months, and can be its own catalyst to extract said electron. Moreover, as the compound is made primarily of nickel, its cost is relatively low.