Showing 20 articles starting at article 501

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry, Energy: Nuclear

Return to the site home page

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Achieving large and uniform particle sizes      (via sciencedaily.com)     Original source 

Dispersions of polymer particles in a liquid phase (latexes) have many important applications in coatings technology, medical imaging, and cell biology. A team of researchers has now developed a method to produce stable polystyrene dispersions with unprecedentedly large, and uniform, particle sizes. Narrow size distributions are essential in many advanced technologies, but were previously difficult to produce photochemically.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

Diapers can be recycled 200 times faster with light      (via sciencedaily.com)     Original source 

More than 100,000 tons of diapers are disposed of annually in Germany. Vast amounts of valuable resources, such as diaper liners, end up in the trash. The liners consist of special polymers, so-called superabsorbers. Researchers have now succeeded in considerably improving their complex recycling process. They use UV radiation to degrade the chemical chains that keep the polymers together. No chemicals are needed. Recycling at room temperature is 200 times faster than conventional recycling. The recycled polymers can then be processed to new adhesives and dyes.

Chemistry: Inorganic Chemistry Physics: Optics
Published

Scientists shed light on potential breakthrough biomedical molecule      (via sciencedaily.com)     Original source 

Developing a new, light-activated method to produce the molecule opens doors for future biomedical applications.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Scientists develop new method to create stable, efficient next-gen solar cells      (via sciencedaily.com)     Original source 

Next-generation solar materials are cheaper and more sustainable to produce than traditional silicon solar cells, but hurdles remain in making the devices durable enough to withstand real-world conditions. A new technique could simplify the development of efficient and stable perovskite solar cells, named for their unique crystalline structure that excels at absorbing visible light.

Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Plants and Animals Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

How quantum light 'sees' quantum sound      (via sciencedaily.com)     Original source 

Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries
Published

Cathode active materials for lithium-ion batteries could be produced at low temperatures      (via sciencedaily.com)     Original source 

Layered lithium cobalt oxide, a key component of lithium-ion batteries, has been synthesized at temperatures as low as 300°C and durations as short as 30 minutes.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: Water Geoscience: Geochemistry
Published

Researchers create the most water-repellent surface ever      (via sciencedaily.com)     Original source 

A revised method to create hydrophobic surfaces has implications for any technology where water meets a solid surface, from optics and microfluidics to cooking.

Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Plant-based materials give 'life' to tiny soft robots      (via sciencedaily.com)     Original source 

A team of researchers has created smart, advanced materials that will be the building blocks for a future generation of soft medical microrobots. These tiny robots have the potential to conduct medical procedures, such as biopsy, and cell and tissue transport, in a minimally invasive fashion.

Chemistry: Inorganic Chemistry Energy: Batteries
Published

A step on the way to solid-state batteries      (via sciencedaily.com)     Original source 

A lithium ceramic could act as a solid electrolyte in a more powerful and cost-efficient generation of rechargeable lithium-ion batteries. The challenge is to find a production method that works without sintering at high temperatures. A research team has now introduced a sinter-free method for the efficient, low-temperature synthesis of these ceramics in a conductive crystalline form.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: Optics
Published

Chemists, engineers craft adjustable arrays of microscopic lenses      (via sciencedaily.com)     Original source 

A team has created minuscule lenses that it can expand or contract in mere seconds -- modifying their magnification, focal length and other optical properties in the process. That on-the-fly adaptability bodes well for the design's use in micro-projection systems and even the culturing of cells, the researchers said.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Electron-rich metals make ceramics tough to crack      (via sciencedaily.com)     Original source 

Engineers have developed a recipe to make a certain class of ceramics tougher and more resistant to cracking. The newfound toughness of these ceramics paves the way for their use in extreme applications, such as spacecraft and other hypersonic vehicles.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

Milestone: Miniature particle accelerator works      (via sciencedaily.com)     Original source 

Particle accelerators are crucial tools in a wide variety of areas in industry, research and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky. Until now, no substantial energy gains were demonstrated. In other words, it has not been shown that electrons really have increased in speed significantly. Two teams of laser physicists have just succeeded in demonstrating a nanophotonic electron accelerator.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Using computer algorithms to find molecular adaptations to improve COVID-19 drugs      (via sciencedaily.com)     Original source 

A new study focuses on using computer algorithms to generate adaptations to molecules in compounds for existing and potential medications that can improve those molecules' ability to bind to the main protease, a protein-based enzyme that breaks down complex proteins, in SARS-CoV-2, the virus that causes COVID-19.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries
Published

Researchers unveil fire-inhibiting nonflammable gel polymer electrolyte for lithium-ion batteries      (via sciencedaily.com)     Original source 

A research team  has succeeded in developing a non-flammable gel polymer electrolyte (GPE) that is set to revolutionize the safety of lithium-ion batteries (LIBs) by mitigating the risks of thermal runaway and fire incidents.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New recipe for efficient, environmentally friendly battery recycling      (via sciencedaily.com)     Original source 

Researchers are now presenting a new and efficient way to recycle metals from spent electric car batteries. The method allows recovery of 100 per cent of the aluminum and 98 per cent of the lithium in electric car batteries. At the same time, the loss of valuable raw materials such as nickel, cobalt and manganese is minimized. No expensive or harmful chemicals are required in the process because the researchers use oxalic acid -- an organic acid that can be found in the plant kingdom.

Biology: Cell Biology Chemistry: General Chemistry: Inorganic Chemistry
Published

Cocoa pods -- a source of chocolate, and potentially, flame retardants      (via sciencedaily.com)     Original source 

As Halloween approaches, so too does the anticipation of a trick-or-treating stash filled with fun-sized chocolate candy bars. But to satisfy our collective craving for this indulgence, millions of cocoa pods are harvested annually. While the beans and pulp go to make chocolate, their husks are thrown away. Now, researchers show that cocoa pod husks could be a useful starting material for flame retardants.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Decontamination method zaps pollutants from soil      (via sciencedaily.com)     Original source 

A rapid, high-heat electrothermal soil remediation process flushes out both organic pollutants and heavy metals in seconds without damaging soil fertility.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Alternative Fuels Energy: Technology Engineering: Nanotechnology Physics: General
Published

Harnessing molecular power: Electricity generation on the nanoscale      (via sciencedaily.com)     Original source 

Researchers tested a molecular energy harvesting device that captures the energy from the natural motion of molecules in a liquid. Their work showed molecular motion can be used to generate a stable electric current. To create the device, they submerged nanoarrays of piezoelectric material in liquid, allowing the movement of the liquid to move the strands like seaweed waving in the ocean, except in this case the movement is on the molecular scale, and the strands are made of zinc oxide. When the zinc oxide material waves, bends, or deforms under motion, it generates electric potential.

Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Geochemistry
Published

Researchers develop organic nanozymes suitable for agricultural use      (via sciencedaily.com)     Original source 

Nanozymes are synthetic materials that mimic the properties of natural enzymes for applications in biomedicine and chemical engineering. They are generally considered too toxic and expensive for use in agriculture and food science. Now, researchers have developed a nanozyme that is organic, non-toxic, environmentally friendly, and cost effective.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Environmental: Water Geoscience: Geochemistry
Published

New polymer membranes, AI predictions could dramatically reduce energy, water use in oil refining      (via sciencedaily.com)     Original source 

Researchers describe a new kind of polymer membrane they created that could reshape how refineries process crude oil, dramatically reducing the energy and water required while extracting even more useful materials. The team also created artificial intelligence tools to predict the performance of these kinds of membranes, which could accelerate development of new ones.