Showing 20 articles starting at article 701
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Energy: Nuclear
Published Processing data at the speed of light



Scientists have developed an extremely small and fast nano-excitonic transistor.
Published Gentle method allows for eco-friendly recycling of solar cells



By using a new method, precious metals can be efficiently recovered from thin-film solar cells. The method is also more environmentally friendly than previous methods of recycling and paves the way for more flexible and highly efficient solar cells.
Published Chemists redesign biological PHAs, 'dream' biodegradable plastics



They've been called 'dream' plastics: polyhydroxyalkanoates, or PHAs. Already the basis of a fledgling industry, they're a class of polymers naturally created by living microorganisms, or synthetically produced from biorenewable feedstocks. They're biodegradable in the ambient environment, including oceans and soil.
Published Luminous molecules



Twisted molecules play an important role in the development of organic light-emitting diodes. A team of chemists has managed to create these compounds with exactly the three-dimensional structure that they wanted. In so doing, they are smoothing the path for new and better light sources.
Published Your fork could someday be made of sugar, wood powders and degrade on-demand



Single-use hard plastics are all around us: utensils, party decorations and food containers, to name a few examples. These items pile up in landfills, and many biodegradable versions stick around for months, requiring industrial composting systems to fully degrade. Now, researchers have created a sturdy, lightweight material that disintegrates on-demand -- and they made it from sugar and wood-derived powders.
Published Pollution monitoring through precise detection of gold nanoparticles in woodlice



Researchers introduce a novel imaging method to detect gold nanoparticles in woodlice. Their method, known as four-wave mixing microscopy, flashes light that the gold nanoparticles absorb. The light flashes again and the subsequent scattering reveals the nanoparticles' locations. With information about the quantity, location, and impact of gold nanoparticles within the organism, scientists can better understand the potential harm other metals may have on nature.
Published Shutting down nuclear power could increase air pollution



A new study shows that if U.S. nuclear power plants are retired, the burning of coal, oil, and natural gas to fill the energy gap could cause more than 5,000 premature deaths.
Published Scientists use peroxide to peer into metal oxide reactions



Researchers to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.
Published Toward tunable molecular switches from organic compounds



Newly synthesized organic molecules can be tuned to emit different colors depending on their molecular structures in crystal form.
Published New atomic-scale understanding of catalysis could unlock massive energy savings



In an advance they consider a breakthrough in computational chemistry research, chemical engineers have developed a model of how catalytic reactions work at the atomic scale. This understanding could allow engineers and chemists to develop more efficient catalysts and tune industrial processes -- potentially with enormous energy savings, given that 90% of the products we encounter in our lives are produced, at least partially, via catalysis.
Published Long-forgotten equation provides new tool for converting carbon dioxide



To manage atmospheric carbon dioxide and convert the gas into a useful product, scientists have dusted off an archaic -- now 120 years old -- electrochemical equation.
Published Two-dimensional nanoparticles with great potential



A research team has discovered how catalysts and many other nanoplatelets can be produced in an environmentally friendly way from readily available materials and in sufficient quantities.
Published Discovery of ferroelectricity in an elementary substance



Researchers have discovered a new single-element ferroelectric material that alters the current understanding of conventional ferroelectric materials and has future applications in data storage devices.
Published A new type of photonic time crystal gives light a boost



Researchers have developed a way to create photonic time crystals and shown that these bizarre, artificial materials amplify the light that shines on them. These findings could lead to more efficient and robust wireless communications and significantly improved lasers.
Published Opening a new frontier: PdMo intermetallic catalyst for promoting CO2 utilization



A recently discovered catalyst, can convert carbon dioxide (CO2) into useful methanol at room temperature and low-pressure conditions. This novel compound, which is thermally and chemically stable in air, represents a new milestone in CO2 conversion via hydrogenation and could be key to slow down climate change.
Published Scientists use computational modeling to design 'ultrastable' materials



Researchers developed a computational approach to predict which metal-organic framework (MOF) structures will be the most stable, and therefore the best candidates for applications such as capturing greenhouse gases.
Published Discovery of crucial clue to accelerate development of carbon-neutral porous materials



A recent study has provided a library of those various molecular clusters for future metal building blocks of MOFs, and suggested practical synthetic strategies.
Published Major storage capacity in water-based batteries



Chemical engineers have discovered a 1,000% difference in the storage capacity of metal-free, water-based battery electrodes.
Published Researchers devise new membrane mirrors for large space-based telescopes



Researchers have developed a new way to produce and shape large, high-quality mirrors that are much thinner than the primary mirrors previously used for telescopes deployed in space. The resulting mirrors are flexible enough to be rolled up and stored compactly inside a launch vehicle and then reshaped after deployment.
Published Strong ultralight material could aid energy storage, carbon capture



Materials scientists showed that fine-tuning interlayer interactions in a class of 2D polymers can determine the materials' loss or retention of desirable mechanical properties in multilayer or bulk form.