Showing 20 articles starting at article 741

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry, Energy: Nuclear

Return to the site home page

Chemistry: Inorganic Chemistry Physics: General Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

AI finds the first stars were not alone      (via sciencedaily.com) 

Machine learning and state-of-the-art supernova nucleosynthesis has helped researchers find that the majority of observed second-generation stars in the universe were enriched by multiple supernovae.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Geochemistry
Published

Photosynthesis 'hack' could lead to new ways of generating renewable energy      (via sciencedaily.com) 

Researchers have 'hacked' the earliest stages of photosynthesis, the natural machine that powers the vast majority of life on Earth, and discovered new ways to extract energy from the process, a finding that could lead to new ways of generating clean fuel and renewable energy.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Physics
Published

Semiconductor lattice marries electrons and magnetic moments      (via sciencedaily.com) 

A model system created by stacking a pair of monolayer semiconductors is giving physicists a simpler way to study confounding quantum behavior, from heavy fermions to exotic quantum phase transitions.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New simulation reveals secrets of exotic form of electrons called polarons      (via sciencedaily.com) 

Conditions mapped for the first time of polaron characteristics in 2D materials. TACC's Frontera supercomputer generated quantum mechanical calculations on hexagonal boron nitride system of 30,000 atoms.

Energy: Nuclear Physics: General Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Neutrinos made by a particle collider detected      (via sciencedaily.com) 

Physicists have detected neutrinos created by a particle collider. The discovery promises to deepen scientists' understanding of the subatomic particles, which were first spotted in 1956 and play a key role in the process that makes stars burn.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

Synthesis gas and battery power from sunlight energy      (via sciencedaily.com) 

Plants use photosynthesis to harvest energy from sunlight. Now researchers have applied this principle as the basis for developing new sustainable processes which in the future may produce syngas (synthetic gas) for the large-scale chemical industry and be able to charge batteries.

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Visualization of electron dynamics on liquid helium      (via sciencedaily.com) 

An international team has discovered how electrons can slither rapidly to-and-fro across a quantum surface when driven by external forces. The research has enabled the visualization of the motion of electrons on liquid helium.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

'Y-ball' compound yields quantum secrets      (via sciencedaily.com) 

Scientists investigating a compound called 'Y-ball' -- which belongs to a mysterious class of 'strange metals' viewed as centrally important to next-generation quantum materials -- have found new ways to probe and understand its behavior.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Engineering: Nanotechnology
Published

Batteries: Passivation layer mystery solved      (via sciencedaily.com) 

In our daily lives, lithium-ion batteries have become indispensable. They function only because of a passivation layer that forms during their initial cycle. As researchers found out via simulations, this solid electrolyte interphase develops not directly at the electrode but aggregates in the solution. Their findings allow the optimization of the performance and lifetime of future batteries.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Surprise in the quantum world: Disorder leads to ferromagnetic topological insulator      (via sciencedaily.com) 

Magnetic topological insulators are an exotic class of materials that conduct electrons without any resistance at all and so are regarded as a promising breakthrough in materials science. Researchers have achieved a significant milestone in the pursuit of energy-efficient quantum technologies by designing the ferromagnetic topological insulator MnBi6Te10 from the manganese bismuth telluride family. The amazing thing about this quantum material is that its ferromagnetic properties only occur when some atoms swap places, introducing antisite disorder.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

'Inkable' nanomaterial promises big benefits for bendable electronics      (via sciencedaily.com) 

An international team of scientists is developing an inkable nanomaterial that they say could one day become a spray-on electronic component for ultra-thin, lightweight and bendable displays and devices.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology
Published

High-energy-density, long life-cycle rechargeable lithium metal batteries      (via sciencedaily.com) 

Research shows promise for developing high-energy-density rechargeable lithium-metal batteries and addressing the electrochemical oxidation instability of ether-based electrolytes.

Chemistry: Biochemistry Chemistry: General Energy: Nuclear Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Nitrate can release uranium into groundwater      (via sciencedaily.com) 

A team has experimentally confirmed that nitrate, a compound common in fertilizers and animal waste, can help transport naturally occurring uranium from the underground to groundwater. The new research backs a previous study showing that aquifers contaminated with high levels of nitrate -- including the High Plains Aquifer residing beneath Nebraska -- also contain uranium concentrations far exceeding a threshold set by the Environmental Protection Agency. Uranium concentrations above that EPA threshold have been shown to cause kidney damage in humans, especially when regularly consumed via drinking water.

Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: General Space: Structures and Features
Published

Scientists find a common thread linking subatomic color glass condensate and massive black holes      (via sciencedaily.com) 

Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

First detection of neutrinos made at a particle collider      (via sciencedaily.com) 

A team including physicists has for the first time detected subatomic particles called neutrinos created by a particle collider, namely at CERN's Large Hadron Collider (LHC). The discovery promises to deepen scientists' understanding of the nature of neutrinos, which are among the most abundant particles in the universe and key to the solution of the question why there is more matter than antimatter.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Can synthetic polymers replace the body's natural proteins?      (via sciencedaily.com) 

Scientists developing new biomaterials often try to mimic the body's natural proteins, but a chemist shows that simpler polymers -- based on a handful of plastic building blocks -- also work well. Using AI, her team was able to design polymer mixtures that replicate simple protein functions within biological fluids. The random heteropolymers dissolve and stabilize proteins and can support cells' normal protein-making machinery. The technique could speed the design of materials for biomedical applications.

Energy: Nuclear
Published

Better simulations of neutron scattering      (via sciencedaily.com) 

Tripoli-4® is a tool used by researchers to simulate the behaviors of interacting neutrons in 3D space. Recently, researchers have developed eTLE: a next-event simulator which aims to increase Tripoli-4®'s precision using Monte Carlo simulations. New research implements and validates eTLE's reliability.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene
Published

Another crystalline layer on crystal surface as a precursor of crystal-to-crystal transition      (via sciencedaily.com) 

Ice surfaces have a thin layer of water below its melting temperature of 0 degrees Celsius. Such premelting phenomenon is important for skating and snowflake growth. Similarly, liquid often crystallizes into a thin layer of crystal on a flat substrate before reaching its freezing temperature, i.e. prefreezing. The thickness of the surface layer usually increases and diverges as approaching the phase transition (such as melting and freezing) temperature. Besides premelting and prefreezing, whether similar surface phenomenon exists as a precursor of a phase transition has rarely been explored. Scientists now propose that a polymorphic crystalline layer may form on a crystal surface before the crystal-crystal phase transition and names it pre-solid-solid transition.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

Nano cut-and-sew: New method for chemically tailoring layered nanomaterials could open pathways to designing 2D materials on demand      (via sciencedaily.com) 

A new process that lets scientists chemically cut apart and stitch together nanoscopic layers of two-dimensional materials -- like a tailor altering a suit -- could be just the tool for designing the technology of a sustainable energy future. Researchers have developed a method for structurally splitting, editing and reconstituting layered materials, called MAX phases and MXenes, with the potential of producing new materials with very unusual compositions and exceptional properties.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

Displays with more brilliant colors through a fundamental physical concept      (via sciencedaily.com) 

New research has shown that a strong coupling of light and material increases the colour brilliance of OLED displays. This increase is independent of the viewing angle and does not affect energy efficiency.