Showing 20 articles starting at article 241

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Thermodynamics, Energy: Nuclear

Return to the site home page

Chemistry: General Chemistry: Thermodynamics Energy: Alternative Fuels Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Microwaves advance solar-cell production and recycling      (via sciencedaily.com)     Original source 

New technology advances solar-cell production and recycling. New microwave technology will improve the manufacture of solar cells and make them easier to recycle.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Gentle method allows for eco-friendly recycling of solar cells      (via sciencedaily.com)     Original source 

By using a new method, precious metals can be efficiently recovered from thin-film solar cells. The method is also more environmentally friendly than previous methods of recycling and paves the way for more flexible and highly efficient solar cells.

Biology: General Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Chemists redesign biological PHAs, 'dream' biodegradable plastics      (via sciencedaily.com)     Original source 

They've been called 'dream' plastics: polyhydroxyalkanoates, or PHAs. Already the basis of a fledgling industry, they're a class of polymers naturally created by living microorganisms, or synthetically produced from biorenewable feedstocks. They're biodegradable in the ambient environment, including oceans and soil.

Chemistry: Thermodynamics Energy: Technology Environmental: General Geoscience: Severe Weather
Published

Cities will need more resilient electricity networks to cope with extreme weather      (via sciencedaily.com)     Original source 

Dense urban areas amplify the effects of higher temperatures, due to the phenomenon of heat islands in cities. This makes cities more vulnerable to extreme climate events. Large investments in the electricity network will be necessary to cool us down during heatwaves and keep us warm during cold snaps, according to a new study.

Chemistry: Biochemistry Chemistry: General Energy: Fossil Fuels Energy: Nuclear Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Shutting down nuclear power could increase air pollution      (via sciencedaily.com)     Original source 

A new study shows that if U.S. nuclear power plants are retired, the burning of coal, oil, and natural gas to fill the energy gap could cause more than 5,000 premature deaths.

Chemistry: General Chemistry: Thermodynamics Offbeat: General Offbeat: Plants and Animals Physics: Optics
Published

New textile unravels warmth-trapping secrets of polar bear fur      (via sciencedaily.com)     Original source 

Engineers have invented a fabric that concludes the 80-year quest to make a synthetic textile modeled on polar bear fur. The results are already being developed into commercially available products.

Chemistry: Thermodynamics Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Absolute zero in the quantum computer      (via sciencedaily.com)     Original source 

Absolute zero cannot be reached -- unless you have an infinite amount of energy or an infinite amount of time. Scientists in Vienna (Austria) studying the connection between thermodynamics and quantum physics have now found out that there is a third option: Infinite complexity. It turns out that reaching absolute zero is in a way equivalent to perfectly erasing information in a quantum computer, for which an infinetly complex quantum computer would be required.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Thermal paint: MXene spray coating can harness infrared radiation for heating or cooling      (via sciencedaily.com)     Original source 

An international team of researchers has found that a thin coating of MXene -- a type of two-dimensional nanomaterial -- could enhance a material's ability to trap or shed heat. The discovery, which is tied to MXene's ability to regulate the passage of ambient infrared radiation, could lead to advances in thermal clothing, heating elements and new materials for radiative heating and cooling.

Energy: Nuclear Physics: General
Published

Cooking up plasmas with microwaves      (via sciencedaily.com)     Original source 

Scientists have created plasmas with fusion-suitable densities, using microwave power with low frequency. The research team has identified three important steps in the plasma production: lightning-like gas breakdown, preliminary plasma production, and steady-state plasma. Blasting the microwaves without alignment of Heliotron J's magnetic field created a discharge that ripped electrons from their atoms and produced an especially dense plasma.

Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues
Published

Colorful films could help buildings, cars keep their cool      (via sciencedaily.com) 

The cold blast of an air conditioner can be a relief as temperatures soar, but 'A/C' units require large amounts of energy and can leak greenhouse gases. Today, scientists report an eco-friendly alternative -- a plant-based film that cools when exposed to sunlight and comes in many textures and bright, iridescent colors. The material could someday keep buildings, cars and other structures cool without requiring power.

Chemistry: Thermodynamics Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geology
Published

Surprise effect: Methane cools even as it heats      (via sciencedaily.com) 

Most climate models do not yet account for a recent discovery: methane traps a great deal of heat in Earth's atmosphere, but also creates cooling clouds that offset 30% of the heat.

Chemistry: Biochemistry Energy: Nuclear Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New type of entanglement lets scientists 'see' inside nuclei      (via sciencedaily.com) 

Nuclear physicists have found a new way to see inside nuclei by tracking interactions between particles of light and gluons. The method relies on harnessing a new type of quantum interference between two dissimilar particles. Tracking how these entangled particles emerge from the interactions lets scientists map out the arrangement of gluons. This approach is unusual for making use of entanglement between dissimilar particles -- something rare in quantum studies.

Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues
Published

What really matters in multi-story building design?      (via sciencedaily.com) 

The impact of multi-story building design considerations on embodied carbon emissions, cost, and operational energy has been revealed.

Chemistry: General Chemistry: Thermodynamics Computer Science: Artificial Intelligence (AI) Energy: Technology Engineering: Robotics Research
Published

Robot caterpillar demonstrates new approach to locomotion for soft robotics      (via sciencedaily.com) 

Researchers have demonstrated a caterpillar-like soft robot that can move forward, backward and dip under narrow spaces. The caterpillar-bot's movement is driven by a novel pattern of silver nanowires that use heat to control the way the robot bends, allowing users to steer the robot in either direction.

Energy: Nuclear Physics: General Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Neutrinos made by a particle collider detected      (via sciencedaily.com) 

Physicists have detected neutrinos created by a particle collider. The discovery promises to deepen scientists' understanding of the subatomic particles, which were first spotted in 1956 and play a key role in the process that makes stars burn.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Molecular teamwork makes the organic dream work      (via sciencedaily.com) 

Molecular engineers have triggered a domino-like structural transition in an organic semiconductor. The energy- and time-saving phenomenon may enhance the performance of smartwatches, solar cells, and other organic electronics.

Chemistry: Biochemistry Chemistry: General Energy: Nuclear Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Nitrate can release uranium into groundwater      (via sciencedaily.com) 

A team has experimentally confirmed that nitrate, a compound common in fertilizers and animal waste, can help transport naturally occurring uranium from the underground to groundwater. The new research backs a previous study showing that aquifers contaminated with high levels of nitrate -- including the High Plains Aquifer residing beneath Nebraska -- also contain uranium concentrations far exceeding a threshold set by the Environmental Protection Agency. Uranium concentrations above that EPA threshold have been shown to cause kidney damage in humans, especially when regularly consumed via drinking water.

Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: General Space: Structures and Features
Published

Scientists find a common thread linking subatomic color glass condensate and massive black holes      (via sciencedaily.com) 

Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.

Chemistry: Thermodynamics Environmental: Wildfires Geoscience: Environmental Issues
Published

Bushfire safe rooms may save lives      (via sciencedaily.com) 

Researchers have built and tested a bushfire safe room that exceeds current Australian standards and could keep people alive or protect valuables when evacuation is no longer an option.