Showing 20 articles starting at article 261
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Energy: Nuclear
Published Better simulations of neutron scattering


Tripoli-4® is a tool used by researchers to simulate the behaviors of interacting neutrons in 3D space. Recently, researchers have developed eTLE: a next-event simulator which aims to increase Tripoli-4®'s precision using Monte Carlo simulations. New research implements and validates eTLE's reliability.
Published Activity deep in Earth affects the global magnetic field


Compass readings that do not show the direction of true north and interference with the operations of satellites are a few of the problems caused by peculiarities of the Earth's magnetic field. The magnetic field radiates around the world and far into space, but it is set by processes that happen deep within the Earth's core, where temperatures exceed 5,000-degrees C. New research from geophysicists suggests that the way this super-hot core is cooled is key to understanding the causes of the peculiarities -- or anomalies, as scientists call them -- of the Earth's magnetic field.
Published Game-changing high-performance semiconductor material could help slash heat emissions


Researchers have engineered a material with the potential to dramatically cut the amount of heat power plants release into the atmosphere.
Published Thermal conductivity of metal organic frameworks


Metal organic frameworks, or MOFs, are kind of like plastic building block toys. The pieces are simple to connect, yet they're capable of building highly sophisticated structures.
Published Hitting nuclei with light may create fluid primordial matter


A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.
Published New 'camera' with shutter speed of 1 trillionth of a second sees through dynamic disorder of atoms


Researchers have developed a new 'camera' that sees the local disorder in materials. Its key feature is a variable shutter speed: because the disordered atomic clusters are moving, when the team used a slow shutter, the dynamic disorder blurred out, but when they used a fast shutter, they could see it. The method uses neutrons to measure atomic positions with a shutter speed of around one picosecond, a trillion times faster than normal camera shutters.
Published Researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films


Researchers have developed an inexpensive method for fabricating multi-walled carbon nanotubes (MWNTs) on a plastic film. The proposed method is simple, can be applied under ambient conditions, reuses MWNTs, and produces flexible wires of tunable resistances without requiring additional steps. It eliminates several drawbacks of current fabrication methods, making it useful for large-scale manufacturing of carbon wiring for flexible all-carbon devices.
Published Clear sign that quark-gluon plasma production 'turns off' at low energy


Physicists report new evidence that production of an exotic state of matter in collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) can be 'turned off' by lowering the collision energy. The findings will help physicists map out the conditions of temperature and density under which the exotic matter, known as a quark-gluon plasma (QGP), can exist and identify key features of the phases of nuclear matter.
Published New method creates material that could create the next generation of solar cells


Perovskites, a family of materials with unique electric properties, show promise for use in a variety fields, including next-generation solar cells. A team of scientists has now created a new process to fabricate large perovskite devices that is more cost- and time-effective than previously possible and that they said may accelerate future materials discovery.
Published Scientists identify new mechanism of corrosion


It started with a mystery: How did molten salt breach its metal container? Understanding the behavior of molten salt, a proposed coolant for next-generation nuclear reactors and fusion power, is a question of critical safety for advanced energy production. The multi-institutional research team, co-led by Penn State, initially imaged a cross-section of the sealed container, finding no clear pathway for the salt appearing on the outside. The researchers then used electron tomography, a 3D imaging technique, to reveal the tiniest of connected passages linking two sides of the solid container. That finding only led to more questions for the team investigating the strange phenomenon.
Published Neutrons reveal key to extraordinary heat transport


Warming a crystal of the mineral fresnoite, scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.
Published Physicists give the first law of thermodynamics a makeover


Physicists at West Virginia University have made a breakthrough on an age-old limitation of the first law of thermodynamics.
Published Study offers details on using electric fields to tune thermal properties of ferroelectric materials


New research sheds light on how electric fields can be used to alter the thermal properties of ferroelectric materials, allowing engineers to manipulate the flow of heat through the materials. Ferroelectric materials are used in a wide variety of applications, from ultrasound devices to memory storage technologies.
Published Reactive fabrics respond to changes in temperature


New textiles change shape when they heat up, giving designers a wide range of new options. In addition to offering adjustable aesthetics, responsive smart fabrics could also help monitor people’s health, improve thermal insulation, and provide new tools for managing room acoustics and interior design.
Published Solid-state thermal transistor demonstrated


An effective, stable solid-state electrochemical transistor has been developed, heralding a new era in thermal management technology.
Published New superalloy could cut carbon emissions from power plants


Researchers have shown that a new 3D-printed superalloy could help power plants generate more electricity while producing less carbon.
Published Engineers discover a new way to control atomic nuclei as 'qubits'


Researchers propose a new approach to making qubits, the basic units in quantum computing, and controlling them to read and write data. The method is based on measuring and controlling the spins of atomic nuclei, using beams of light from two lasers of slightly different colors.
Published Proposed quantum device may succinctly realize emergent particles such as the Fibonacci anyon


Tenacity has taken a roadblock and turned it into a possible route to the development of quantum computing.
Published Add-on device makes home furnaces cleaner, safer and longer-lasting


Natural gas furnaces not only heat your home, they also produce a lot of pollution. Even modern high-efficiency condensing furnaces produce significant amounts of corrosive acidic condensation and unhealthy levels of nitrogen oxides, carbon monoxide, hydrocarbons and methane. These emissions are typically vented into the atmosphere and end up polluting our soil, water and air. Scientists have developed an affordable add-on technology that removes more than 99.9% of acidic gases and other emissions to produce an ultraclean natural gas furnace. This acidic gas reduction, or AGR, technology can also be added to other natural gas-driven equipment such as water heaters, commercial boilers and industrial furnaces.
Published Chiral phonons create spin current without needing magnetic materials


Researchers chiral phonons to convert wasted heat into spin information -- without needing magnetic materials. The finding could lead to new classes of less expensive, energy-efficient spintronic devices for use in applications ranging from computational memory to power grids.