Showing 20 articles starting at article 1

Next 20 articles >

Categories: Energy: Nuclear, Geoscience: Earthquakes

Return to the site home page

Environmental: General Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geology Offbeat: Earth and Climate Offbeat: General
Published

Two epicenters led to Japan's violent Noto earthquake on New Year's Day      (via sciencedaily.com)     Original source 

The 7.5- magnitude earthquake beneath Japan's Noto Peninsula on Jan. 1, 2024, occurred when a 'dual-initiation mechanism' applied enough energy from two different locations to break through a fault barrier -- an area that locks two sides of a fault in place and absorbs the energy of fault movement, slowing it down or stopping it altogether.

Chemistry: Thermodynamics Computer Science: General Energy: Nuclear Physics: General
Published

Quenching the intense heat of a fusion plasma may require a well-placed liquid metal evaporator      (via sciencedaily.com)     Original source 

New fusion simulations of the inside of a tokamak reveal the ideal spot for a 'cave' with flowing liquid lithium is near the bottom by the center stack, as the evaporating metal particles should land in just the right spot to dissipate excess heat from the plasma.

Chemistry: Biochemistry Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

New heaviest exotic antimatter nucleus      (via sciencedaily.com)     Original source 

Scientists studying the tracks of particles streaming from six billion collisions of atomic nuclei at the Relativistic Heavy Ion Collider (RHIC) -- an 'atom smasher' that recreates the conditions of the early universe -- have discovered a new kind of antimatter nucleus, the heaviest ever detected. Composed of four antimatter particles -- an antiproton, two antineutrons, and one antihyperon -- these exotic antinuclei are known as antihyperhydrogen-4.

Environmental: General Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geography Geoscience: Geology
Published

Decoding mysterious seismic signals      (via sciencedaily.com)     Original source 

Geophysicists find link between seismic waves called PKP precursors and anomalies in Earth's mantle that are associated with hotspots associated with volcanism on the surface.

Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geochemistry Geoscience: Geology
Published

Researchers unveil mysteries of ancient Earth      (via sciencedaily.com)     Original source 

A team of researchers has made strides in understanding the formation of massif-type anorthosites, enigmatic rocks that only formed during the middle part of Earth's history. These plagioclase-rich igneous rock formations, which can cover areas as large as 42,000 square kilometers and host titanium ore deposits, have puzzled scientists for decades due to conflicting theories about their origins.

Environmental: General Environmental: Water Geoscience: Earthquakes Geoscience: Environmental Issues Geoscience: Geography
Published

Greenland mega-tsunami led to week-long oscillating fjord wave      (via sciencedaily.com)     Original source 

In September 2023, a megatsunami in remote eastern Greenland sent seismic waves around the world, piquing the interest of the global research community. The event created a week-long oscillating wave in Dickson Fjord, according to a new report in The Seismic Record.

Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geography Geoscience: Landslides
Published

Sichuan Province earthquake offers lessons for landslide prediction from GNSS observations      (via sciencedaily.com)     Original source 

Using data collected from a 2022 magnitude 6.8 earthquake in Luding County in China's Sichuan Province, researchers tested whether Global Navigation Satellite System (GNSS) observations could be used for rapid prediction of earthquake-triggered landslides.

Chemistry: Biochemistry Energy: Nuclear Energy: Technology Physics: General
Published

World's highest-performance superconducting wire segment      (via sciencedaily.com)     Original source 

Researchers report that they have fabricated the world's highest-performing high-temperature superconducting wire segment while making the price-performance metric significantly more favorable.

Energy: Nuclear Physics: General
Published

Researchers dig deeper into stability challenges of nuclear fusion -- with mayonnaise      (via sciencedaily.com)     Original source 

Researchers are using mayonnaise to study and address the stability challenges of nuclear fusion by examining the phases of Rayleigh-Taylor instability. Their innovative approach aims to inform the design of more stable fusion capsules, contributing to the global effort to harness clean fusion energy. Their most recent paper explores the critical transitions between elastic and plastic phases in these conditions.

Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Environmental Issues
Published

Study revisits Texas seismic activity occurring before 2017, confirming connection to wastewater injection      (via sciencedaily.com)     Original source 

A new study by seismologists reexamines earthquakes in the Permian Basin that occurred before 2017 against the real-time data collected from earthquakes taking place after 2020. Results confirm that the seismicity occurring from 2009-2017 was causally linked to the underground injection of wastewater that is a byproduct of oil and gas extraction.

Engineering: Robotics Research Environmental: General Geoscience: Earthquakes Geoscience: Environmental Issues Geoscience: Geography
Published

Towards smart cities: Predicting soil liquefaction risk using artificial intelligence      (via sciencedaily.com)     Original source 

Soil liquefaction that results in infrastructure damage has long been a point of contention for urban planners and engineers. Accurately predicting the soil liquefaction risk of a region could help overcome this challenge. Accordingly, researchers applied artificial intelligence to generate soil liquefaction risk maps, superseding already published risk maps.

Chemistry: Biochemistry Chemistry: General Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Nuclear Energy: Technology Physics: General Physics: Optics
Published

Fresh light on the path to net zero      (via sciencedaily.com)     Original source 

Researchers have used magnetic fields to reveal the mystery of how light particles split. Scientists are closer to giving the next generation of solar cells a powerful boost by integrating a process that could make the technology more efficient by breaking particles of light photons into small chunks.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Nuclear Offbeat: General Physics: General
Published

A new way to make element 116 opens the door to heavier atoms      (via sciencedaily.com)     Original source 

Researchers have successfully made super-heavy element 116 using a beam of titanium-50. That milestone sets the team up to attempt making the heaviest element yet: 120.

Energy: Nuclear Physics: General
Published

Come closer: Titanium-48's nuclear structure changes when observed at varying distances      (via sciencedaily.com)     Original source 

Researchers have found that titanium-48 changes from a shell model structure to an alpha-cluster structure depending on the distance from the center of the nucleus. The results upend the conventional understanding of nuclear structure and are expected to provide clues to the Gamow theory on the alpha-decay process that occurs in heavy nuclei, which has not been solved for nearly 100 years.

Chemistry: Biochemistry Energy: Nuclear Physics: General
Published

Quadrupolar nuclei measured by zero-field NMR      (via sciencedaily.com)     Original source 

Researchers have achieved a breakthrough in zero-field nuclear magnetic resonance spectroscopy, paving the way towards benchmarking quantum chemistry calculations.

Energy: Fossil Fuels Energy: Nuclear Energy: Technology Environmental: General
Published

Pinpointing coal plants to convert to nuclear energy, considering both practicality and community support      (via sciencedaily.com)     Original source 

An assessment ranks the feasibility of converting 245 operational coal power plants in the U.S. into advanced nuclear reactors, providing valuable insights for policymakers and utilities to meet decarbonization goals, according to a new study.

Chemistry: Biochemistry Energy: Nuclear Energy: Technology
Published

What was behind the 2021-2022 energy crisis within Europe?      (via sciencedaily.com)     Original source 

A team of researchers had already been working with electricity price data for years before Russia's invasion of Ukraine, exploring statistics and developing forecasting methods. Now they zero in on how prices in different countries relate and how countries were affected by the energy crisis and address the interdependencies of different markets. Their approach combines statistical physics and network science, identifying communities and the fundamental spatiotemporal patterns within the electricity price/time data from all countries. The researchers hope their work will strengthen the European perspective in the political debate about electricity markets and prices, because problems like this are best tackled via international cooperation.

Chemistry: Inorganic Chemistry Energy: Nuclear Environmental: General Physics: General Physics: Optics
Published

Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature      (via sciencedaily.com)     Original source 

Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.