Showing 20 articles starting at article 41

< Previous 20 articles        Next 20 articles >

Categories: Energy: Nuclear, Geoscience: Earthquakes

Return to the site home page

Chemistry: General Energy: Nuclear Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Much more than a world first image of radioactive cesium atoms      (via sciencedaily.com)     Original source 

Thirteen years after the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP), a breakthrough in analysis has permitted a world first: direct imaging of radioactive cesium (Cs) atoms in environmental samples.

Chemistry: Biochemistry Energy: Nuclear Environmental: General Geoscience: Environmental Issues
Published

The case for sharing carbon storage risk      (via sciencedaily.com)     Original source 

Even the most optimistic projections for the rapid build-out of solar, wind, and other low-carbon resources acknowledge that coal, natural gas, and other fossil fuels will dominate the world's energy mix for decades to come. If the vast greenhouse gas emissions from burning these fossil fuels continue to enter the planet's atmosphere, global warming will not be limited to sustainable levels. The capture and geologic sequestration of carbon emissions (CCS) offer a promising solution to the world's carbon conundrum.

Environmental: General Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Environmental Issues Geoscience: Geology
Published

Heavy snowfall and rain may contribute to some earthquakes      (via sciencedaily.com)     Original source 

Episodes of heavy snowfall and rain likely contributed to a swarm of earthquakes over the past several years in northern Japan, researchers find. Their study shows climate conditions could initiate some earthquakes.

Geoscience: Earthquakes Geoscience: Environmental Issues
Published

Pore pressure diffusion led to microseismicity at Illinois basin carbon sequestration site      (via sciencedaily.com)     Original source 

Pore pressure diffusion generated by carbon dioxide injected underground at a carbon storage site in the Illinois Basin is the likely cause of hundreds of microearthquakes that took place at the site between 2011 and 2012, according to a new analysis.

Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology
Published

Researchers show that slow-moving earthquakes are controlled by rock permeability      (via sciencedaily.com)     Original source 

A research group explores how the makeup of rocks, specifically their permeability -- or how easily fluids can flow through them -- affects the frequency and intensity of slow slip events. Slow slips' role in the earthquake cycle may help lead to a better model to predict when earthquakes happen.

Chemistry: General Energy: Nuclear Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General
Published

New Nevada experiments will improve monitoring of nuclear explosions      (via sciencedaily.com)     Original source 

On an October morning in 2023, a chemical explosion detonated in a tunnel under the Nevada desert was the launch of the next set of experiments by the National Nuclear Security Administration, with the goal to improve detection of low-yield nuclear explosions around the world.

Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geography
Published

Do earthquake hazard maps predict higher shaking than actually occurred?      (via sciencedaily.com)     Original source 

A research team studied earthquake hazard maps from five countries and found that all the maps seemed to overpredict the historically observed earthquake shaking intensities. In analyzing the possible causes, the researchers discovered the issue was with the conversion equations used in comparing the maps predicting future quakes with actual shaking data, rather than systemic problems with the hazard modeling itself.

Energy: Nuclear Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Atomic nucleus excited with laser: a breakthrough after decades      (via sciencedaily.com)     Original source 

For the first time, the state of an atomic nucleus was switched with a laser. For decades, physicists have been looking for such a nuclear transition -- now it has been found. This opens up a new field of research with many technological applications. Now, nuclei can be used for extremely precise measurements. For example, a nuclear clock could be built that could measure time more precisely than the best atomic clocks available today.

Energy: Nuclear
Published

Major milestone reached for key weapons component      (via sciencedaily.com)     Original source 

Scientists have completed a crucial weapons component development milestone, prior to full rate production.

Energy: Nuclear Physics: General Physics: Quantum Physics
Published

New beta-decay measurements in mirror nuclei pin down the weak nuclear force      (via sciencedaily.com)     Original source 

Scientists have gained insights into the weak nuclear force from new, more sensitive studies of the beta decays of the 'mirror' nuclei lithium-8 and boron-8. The weak nuclear force drives the process of nuclear beta decay. The research found that the properties of the beta decays of lithium-8 and boron-8 are in perfect agreement with the predictions of the Standard Model.

Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geology
Published

Scientists trigger mini-earthquakes in the lab      (via sciencedaily.com)     Original source 

Earthquakes and landslides are famously difficult to predict and prepare for. By studying a miniature version of the ground in the lab, scientists have demonstrated how these events can be triggered by a small external shock wave. Bring a flotation device: it involves the ground briefly turning into a liquid!

Energy: Nuclear Physics: General
Published

Creating an island paradise in a fusion reactor      (via sciencedaily.com)     Original source 

In their ongoing quest to develop a range of methods for managing plasma so it can be used to generate electricity in a process known as fusion, researchers have shown how two old methods can be combined to provide greater flexibility.

Energy: Nuclear Energy: Technology Physics: General
Published

With inspiration from 'Tetris,' researchers develop a better radiation detector      (via sciencedaily.com)     Original source 

A new detector system based on the game 'Tetris' could enable inexpensive, accurate radiation detectors for monitoring nuclear sites.

Chemistry: Thermodynamics Environmental: General Geoscience: Earth Science Geoscience: Earthquakes
Published

Rock permeability, microquakes link may be a boon for geothermal energy      (via sciencedaily.com)     Original source 

Using machine learning, researchers have tied low-magnitude microearthquakes to the permeability of subsurface rocks beneath the Earth, a discovery that could have implications for improving geothermal energy transfer.

Energy: Nuclear Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers discover 'neutronic molecules'      (via sciencedaily.com)     Original source 

Researchers have discovered 'neutronic' molecules, in which neutrons can be made to cling to quantum dots, held just by the strong force. The finding may lead to new tools for probing material properties at the quantum level and exploring new kinds of quantum information processing devices.

Energy: Alternative Fuels Energy: Nuclear Physics: General
Published

Nuclear fusion, lithium and the tokamak: Adding just enough fuel to the fire      (via sciencedaily.com)     Original source 

Building upon recent findings showing the promise of coating the inner surface of the vessel containing a fusion plasma in liquid lithium, researchers have determined the maximum density of uncharged particles at the edge of a plasma before certain instabilities become unpredictable. The research includes observations, numerical simulations and analysis from their experiments inside a fusion plasma vessel called the Lithium Tokamak Experiment-Beta (LTX- ). This is the first time such a level has been established for LTX- , and knowing it is a big step in their mission to prove lithium is the ideal choice for an inner-wall coating in a tokamak because it guides them toward the best practices for fueling their plasmas.

Geoscience: Earth Science Geoscience: Earthquakes
Published

Mathematical innovations enable advances in seismic activity detection      (via sciencedaily.com)     Original source 

Scientists successfully addressed mathematical challenges in conventional Spectral Matrix analysis, used to analyze three-component seismic signals, by introducing time-delay components. The new technique enables the characterization of various polarized waves and the detection of seismic events that have previously gone unnoticed by conventional methods. These findings pave the way for improving a variety of applications, including earthquake detection.

Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Optics Physics: Quantum Physics
Published

Plasma oscillations propel breakthroughs in fusion energy      (via sciencedaily.com)     Original source 

Researchers have discovered a new class of plasma oscillations -- the back-and-forth, wave-like movement of electrons and ions. The research paves the way for improved particle accelerators and commercial fusion energy.

Geoscience: Earthquakes Offbeat: Earth and Climate Offbeat: General Physics: Acoustics and Ultrasound
Published

What kinds of seismic signals did Swifties send at LA concert?      (via sciencedaily.com)     Original source 

Seattle may have experienced its own Swift Quake last July, but at an August 2023 concert Taylor Swift's fans in Los Angeles gave scientists a lot of shaking to ponder. After some debate, a research team concluded that it was likely the dancing and jumping motions of the audience at SoFi Stadium -- not the musical beats or reverberations of the sound system -- that generated the concert's distinct harmonic tremors.