Showing 20 articles starting at article 1
Categories: Energy: Nuclear, Geoscience: Landslides
Published New study reveals devastating power and colossal extent of a giant underwater avalanche off the Moroccan coast



New research has revealed how an underwater avalanche grew more than 100 times in size causing a massive trail of destruction as it traveled 2000km across the Atlantic Ocean seafloor off the North West coast of Africa. Researchers provide an unprecedented insight into the scale, force and impact of one of nature's mysterious phenomena, underwater avalanches.
Published Quenching the intense heat of a fusion plasma may require a well-placed liquid metal evaporator



New fusion simulations of the inside of a tokamak reveal the ideal spot for a 'cave' with flowing liquid lithium is near the bottom by the center stack, as the evaporating metal particles should land in just the right spot to dissipate excess heat from the plasma.
Published New heaviest exotic antimatter nucleus



Scientists studying the tracks of particles streaming from six billion collisions of atomic nuclei at the Relativistic Heavy Ion Collider (RHIC) -- an 'atom smasher' that recreates the conditions of the early universe -- have discovered a new kind of antimatter nucleus, the heaviest ever detected. Composed of four antimatter particles -- an antiproton, two antineutrons, and one antihyperon -- these exotic antinuclei are known as antihyperhydrogen-4.
Published Urban street networks, building density shape severity of floods



The design of streets and layout of buildings have an impact on a city's resilience in the face of increasingly severe floods brought on by climate change. Researchers look at buildings and other urban structures as physicists consider elements in complex material systems. With this insight, the researchers have developed a new approach to urban flood modelling and found their results helpful in analyzing city-to-city variations in flood risk globally.
Published Sichuan Province earthquake offers lessons for landslide prediction from GNSS observations



Using data collected from a 2022 magnitude 6.8 earthquake in Luding County in China's Sichuan Province, researchers tested whether Global Navigation Satellite System (GNSS) observations could be used for rapid prediction of earthquake-triggered landslides.
Published World's highest-performance superconducting wire segment



Researchers report that they have fabricated the world's highest-performing high-temperature superconducting wire segment while making the price-performance metric significantly more favorable.
Published Researchers dig deeper into stability challenges of nuclear fusion -- with mayonnaise



Researchers are using mayonnaise to study and address the stability challenges of nuclear fusion by examining the phases of Rayleigh-Taylor instability. Their innovative approach aims to inform the design of more stable fusion capsules, contributing to the global effort to harness clean fusion energy. Their most recent paper explores the critical transitions between elastic and plastic phases in these conditions.
Published Fresh light on the path to net zero



Researchers have used magnetic fields to reveal the mystery of how light particles split. Scientists are closer to giving the next generation of solar cells a powerful boost by integrating a process that could make the technology more efficient by breaking particles of light photons into small chunks.
Published A new way to make element 116 opens the door to heavier atoms



Researchers have successfully made super-heavy element 116 using a beam of titanium-50. That milestone sets the team up to attempt making the heaviest element yet: 120.
Published Come closer: Titanium-48's nuclear structure changes when observed at varying distances



Researchers have found that titanium-48 changes from a shell model structure to an alpha-cluster structure depending on the distance from the center of the nucleus. The results upend the conventional understanding of nuclear structure and are expected to provide clues to the Gamow theory on the alpha-decay process that occurs in heavy nuclei, which has not been solved for nearly 100 years.
Published 2023 Rolling Hills Estates landslide likely began the winter before



Landslides triggered by intense rainfall can sometimes be predicted along with incoming storms, but dry-season landslides often take people by surprise. The July 2023 Rolling Hills Estates landslide that destroyed 12 homes seemed to come out of nowhere, but new research shows it began as early as December 2022. Researchers are developing a database that will enable scientists to plug in new data to monitor potential landslides in real time and possibly predict them.
Published Quadrupolar nuclei measured by zero-field NMR



Researchers have achieved a breakthrough in zero-field nuclear magnetic resonance spectroscopy, paving the way towards benchmarking quantum chemistry calculations.
Published Pinpointing coal plants to convert to nuclear energy, considering both practicality and community support



An assessment ranks the feasibility of converting 245 operational coal power plants in the U.S. into advanced nuclear reactors, providing valuable insights for policymakers and utilities to meet decarbonization goals, according to a new study.
Published What was behind the 2021-2022 energy crisis within Europe?



A team of researchers had already been working with electricity price data for years before Russia's invasion of Ukraine, exploring statistics and developing forecasting methods. Now they zero in on how prices in different countries relate and how countries were affected by the energy crisis and address the interdependencies of different markets. Their approach combines statistical physics and network science, identifying communities and the fundamental spatiotemporal patterns within the electricity price/time data from all countries. The researchers hope their work will strengthen the European perspective in the political debate about electricity markets and prices, because problems like this are best tackled via international cooperation.
Published Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature



Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.
Published Pair plasmas found in deep space can now be generated in the lab



Researchers have experimentally generated high-density relativistic electron-positron pair-plasma beams by producing two to three orders of magnitude more pairs than previously reported.
Published Metal alloys that can take the heat



Complex metal alloys enter a new era of predictive design for aerospace and other high-temperature applications.
Published New plasma escape mechanism could protect fusion vessels from excessive heat



The exhaust heat generated by a fusing plasma in a commercial-scale reactor may not be as damaging to the vessel's innards as once thought, according to new research about escaping plasma particles.
Published US public opinion on social media is warming to nuclear energy, but concerns remain



The U.S. public displays more positive than negative sentiment toward nuclear energy but concerns remain about waste, cost and safety, according to an analysis of 300,000 posts on social media.
Published AI approach elevates plasma performance and stability across fusion devices



Fusion researchers have successfully deployed machine learning methods to suppress harmful plasma edge instabilities without sacrificing plasma performance.