Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Energy: Nuclear, Geoscience: Geology
Published Source rocks of the first real continents



Geoscientists have uncovered a missing link in the enigmatic story of how the continents developed- - a revised origin story that doesn't require the start of plate tectonics or any external factor to explain their formation. Instead, the findings rely solely on internal geological forces that occurred within oceanic plateaus that formed during the first few hundred million years of Earth's history.
Published Unexpected biodiversity on the ocean floor



Hydrothermal vents and manganese nodule fields in the deep oceans contain more biodiversity than expected.
Published Liquid lithium on the walls of a fusion device helps the plasma within maintain a hot edge



Emerging research suggests it may be easier to use fusion as a power source if liquid lithium is applied to the internal walls of the device housing the plasma. Past experiments studied solid lithium coatings and found they could enhance a plasma. The researchers were pleased they could yield similar results with liquid lithium, as it's better suited for use in a large-scale tokamak.
Published Gravity helps show strong force strength in the proton



New research conducted by nuclear physicists is using a method that connects theories of gravitation to interactions among the smallest particles of matter. The result is insight into the strong force, a powerful mediator of particle interactions in the subatomic realm. The research has revealed, for the first time, a snapshot of the distribution of the shear strength of the strong force inside the proton -- or how strong an effort must be to overcome the strong force to move an object it holds in its grasp. At its peak, the nuclear physicists found that a force of over four metric tons would be required to overcome the binding power of the strong force.
Published Records of cometary dust hitting the asteroid Ryugu



The Hayabusa2 mission that collected samples from the asteroid Ryugu has provided a treasure trove of insights into our solar system. After analyzing samples further, a team of researchers have unearthed evidence that cometary organic matter was transported from space to the near-Earth region.
Published Planetary Commons: Fostering global cooperation to safeguard critical Earth system functions



Tipping elements of the Earth system should be considered global commons, researchers argue. Global commons cannot -- as they currently do -- only include the parts of the planet outside of national borders, like the high seas or Antarctica. They must also include all the environmental systems that regulate the functioning and state of the planet, namely all systems on Earth we all depend on, irrespective on where in the world we live. This calls for a new level of transnational cooperation, leading experts in legal, social and Earth system sciences say. To limit risks for human societies and secure critical Earth system functions they propose a new framework of planetary commons to guide governance of the planet.
Published Key factors in human-made earthquakes



Researchers report that the roughness of pre-existing faults and associated stress heterogeneity in geological reservoirs play a key role for causing human-made earthquakes, so-called runaway events. The study combines novel fluid injection experiments under acoustic monitoring performed in GFZ's geomechanical laboratory with numerical modelling results.
Published A non-proliferation solution: Using antineutrinos to surveil nuclear reactors



Antineutrinos generated in nuclear fission can be measured to remotely monitor the operation of nuclear reactors and verify that they are not being used to produce nuclear weapons, report scientists. Thanks to a newly developed method, it is now possible to estimate a reactor's operation status, fuel burnup, and fuel composition based entirely on its antineutrino emissions. This technique could contribute massively to nuclear non-proliferation efforts and, in turn, safer nuclear energy.
Published Solid-state qubits: Forget about being clean, embrace mess



New findings debunk previous wisdom that solid-state qubits need to be super dilute in an ultra-clean material to achieve long lifetimes. Instead, cram lots of rare-earth ions into a crystal and some will form pairs that act as highly coherent qubits, a new paper shows.
Published Study uncovers potential origins of life in ancient hot springs



A research team investigated how the emergence of the first living systems from inert geological materials happened on the Earth, more than 3.5 billion years ago. Scientists found that by mixing hydrogen, bicarbonate, and iron-rich magnetite under conditions mimicking relatively mild hydrothermal vent results in the formation of a spectrum of organic molecules, most notably including fatty acids stretching up to 18 carbon atoms in length.
Published Meteorite analysis shows Earth's building blocks contained water



Analysis of iron meteorites from the earliest years of the solar system indicate that the planetary 'seeds' that ultimately formed Earth contained water.
Published From NYC to DC and beyond, cities on the East Coast are sinking



Major cities on the U.S. Atlantic coast are sinking, in some cases as much as 5 millimeters per year -- a decline at the ocean's edge that well outpaces global sea level rise, confirms new research. Particularly hard hit population centers such as New York City and Long Island, Baltimore, and Virginia Beach and Norfolk are seeing areas of rapid 'subsidence,' or sinking land, alongside more slowly sinking or relatively stable ground, increasing the risk to roadways, runways, building foundations, rail lines, and pipelines, according to a new study.
Published Machine learning boosts search for new materials



During X-ray diffraction experiments, bright lasers shine on a sample, producing diffracted images that contain important information about the material's structure and properties. But conventional methods of analyzing these images can be contentious, time-consuming, and often ineffective, so scientists are developing deep learning models to better leverage the data.
Published Mesopotamian bricks unveil the strength of Earth's ancient magnetic field



Ancient bricks inscribed with the names of Mesopotamian kings have yielded important insights into a mysterious anomaly in Earth's magnetic field 3,000 years ago, according to a new study.
Published Little bacterium may make big impact on rare-earth processing



A tiny, hard-working bacterium -- which weighs one-trillionth of a gram -- may soon have a large influence on processing rare earth elements in an eco-friendly way.
Published Exoplanets' climate -- it takes nothing to switch from habitable to hell



The Earth is a wonderful blue and green dot covered with oceans and life, while Venus is a yellowish sterile sphere that is not only inhospitable but also sterile. However, the difference between the two bears to only a few degrees in temperature. A team of astronomers has achieved a world's first by managing to simulate the entirety of the runaway greenhouse process which can transform the climate of a planet from idyllic and perfect for life, to a place more than harsh and hostile. The scientists have also demonstrated that from initial stages of the process, the atmospheric structure and cloud coverage undergo significant changes, leading to an almost-unstoppable and very complicated to reverse runaway greenhouse effect. On Earth, a global average temperature rise of just a few tens of degrees, subsequent to a slight rise of the Sun's luminosity, would be sufficient to initiate this phenomenon and to make our planet inhabitable.
Published Global inventory of sound production brings us one step closer to understanding aquatic ecosystems



Our understanding of which aquatic species produce sounds just took a big step forward. Scientists have created an inventory of species confirmed or expected to produce sound underwater.
Published Positive tipping points must be triggered to solve climate crisis



Positive tipping points must be triggered if we are to avoid the severe consequences of damaging Earth system tipping points, researchers say.
Published Drones capture new clues about how water shapes mountain ranges over time



Drones flying along miles of rivers in the steep, mountainous terrain of central Taiwan and mapping the rock properties have revealed new clues about how water helps shape mountains over geological time.
Published Newly developed material gulps down hydrogen, spits it out, protects fusion reactor walls



A recent advance could enable more efficient compact fusion reactors that are easier to repair and maintain.