Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Energy: Nuclear, Paleontology: Dinosaurs
Published New dino, 'Iani,' was face of a changing planet



A newly discovered plant-eating dinosaur may have been a species' 'last gasp' during a period when Earth's warming climate forced massive changes to global dinosaur populations.
Published Multiple species of semi-aquatic dinosaur may have roamed pre-historic Britain



Palaeontologists studying a British dinosaur tooth have concluded that several distinct groups of spinosaurs -- dinosaurs with fearsome crocodile-like skulls -- inhabited southern England over 100 million years ago.
Published Under pressure: Foundations of stellar physics and nuclear fusion investigated



Research using the world's most energetic laser has shed light on the properties of highly compressed matter -- essential to understanding the structure of giant planets and stars, and to develop controlled nuclear fusion, a process that could harvest carbon-free energy.
Published 107-million-year-old pterosaur bones: Oldest in Australia



A team of researchers have confirmed that 107-million-year-old pterosaur bones discovered more than 30 years ago are the oldest of their kind ever found in Australia, providing a rare glimpse into the life of these powerful, flying reptiles that lived among the dinosaurs.
Published Keeping time with an atomic nucleus



Nuclear clocks could allow scientists to probe the fundamental forces of the universe in the future. Researchers have made a crucial advance in this area as part of an international collaboration.
Published Dinosaurs were the first to take the perspectives of others



Understanding that others hold different viewpoints from your own is essential for human sociality. Adopting another person's visual perspective is a complex skill that emerges around the age of two. A new study suggests that this ability first arose in dinosaurs, at least 60 million years before it appeared in mammals. These findings challenge the idea that mammals were the originators of novel and superior forms of intelligence in the wake of the dinosaur extinction.
Published Demystifying vortex rings in nuclear fusion, supernovae



Better understanding the formation of swirling, ring-shaped disturbances -- known as vortex rings -- could help nuclear fusion researchers compress fuel more efficiently, bringing it closer to becoming a viable energy source. A mathematical model linking these vortices with more pedestrian types, like smoke rings, could help engineers control their behavior in power generation and more.
Published Fossil of mosasaur with bizarre 'screwdriver teeth' found in Morocco



Scientists have discovered a new species of mosasaur, a sea-dwelling lizard from the age of the dinosaurs, with strange, ridged teeth unlike those of any known reptile. Along with other recent finds from Africa, it suggests that mosasaurs and other marine reptiles were evolving rapidly up until 66 million years ago, when they were wiped out by an asteroid along with the dinosaurs and around 90% of all species on Earth.
Published Simulation provides images from the carbon nucleus



What does the inside of a carbon atom's nucleus look like? A new study provides a comprehensive answer to this question. In the study, the researchers simulated all known energy states of the nucleus. These include the puzzling Hoyle state. If it did not exist, carbon and oxygen would only be present in the universe in tiny traces. Ultimately, we therefore also owe it our own existence.
Published Giants of the Jurassic seas were twice the size of a killer whale



There have been heated debates over the size of Jurassic animals. The speculation was set to continue, but now a chance discovery in an Oxfordshire museum has led to palaeontologists publishing a paper on a Jurassic species potentially reaching a whopping 14.4 meters -- twice the size of a killer whale.
Published Shutting down nuclear power could increase air pollution



A new study shows that if U.S. nuclear power plants are retired, the burning of coal, oil, and natural gas to fill the energy gap could cause more than 5,000 premature deaths.
Published Analysis of dinosaur eggshells: Bird-like Troodon laid 4 to 6 eggs in a communal nest


An international research team has determined that Troodon, a dinosaur very close to modern birds, was a warm-blooded animal (an endotherm), but had a reproductive system similar to that of modern reptiles. The scientists applied a new method which allowed for accurate determination of the temperature when the egg's carbonate shell was formed. Furthermore, the researchers showed that Troodon laid 4 to 6 eggs per clutch. As nests with up to 24 Troodon eggs had been found, the scientists conclude that several Troodon females laid their eggs in communal nests.
Published Predatory dinosaurs such as T. rex sported lizard-like lips


A new study suggests that predatory dinosaurs, such as Tyrannosaurus rex, did not have permanently exposed teeth as depicted in films such as Jurassic Park, but instead had scaly, lizard-like lips covering and sealing their mouths.
Published Cooking up plasmas with microwaves



Scientists have created plasmas with fusion-suitable densities, using microwave power with low frequency. The research team has identified three important steps in the plasma production: lightning-like gas breakdown, preliminary plasma production, and steady-state plasma. Blasting the microwaves without alignment of Heliotron J's magnetic field created a discharge that ripped electrons from their atoms and produced an especially dense plasma.
Published New type of entanglement lets scientists 'see' inside nuclei


Nuclear physicists have found a new way to see inside nuclei by tracking interactions between particles of light and gluons. The method relies on harnessing a new type of quantum interference between two dissimilar particles. Tracking how these entangled particles emerge from the interactions lets scientists map out the arrangement of gluons. This approach is unusual for making use of entanglement between dissimilar particles -- something rare in quantum studies.
Published Neutrinos made by a particle collider detected


Physicists have detected neutrinos created by a particle collider. The discovery promises to deepen scientists' understanding of the subatomic particles, which were first spotted in 1956 and play a key role in the process that makes stars burn.
Published Nitrate can release uranium into groundwater


A team has experimentally confirmed that nitrate, a compound common in fertilizers and animal waste, can help transport naturally occurring uranium from the underground to groundwater. The new research backs a previous study showing that aquifers contaminated with high levels of nitrate -- including the High Plains Aquifer residing beneath Nebraska -- also contain uranium concentrations far exceeding a threshold set by the Environmental Protection Agency. Uranium concentrations above that EPA threshold have been shown to cause kidney damage in humans, especially when regularly consumed via drinking water.
Published Scientists find a common thread linking subatomic color glass condensate and massive black holes


Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.
Published Better simulations of neutron scattering


Tripoli-4® is a tool used by researchers to simulate the behaviors of interacting neutrons in 3D space. Recently, researchers have developed eTLE: a next-event simulator which aims to increase Tripoli-4®'s precision using Monte Carlo simulations. New research implements and validates eTLE's reliability.
Published Hitting nuclei with light may create fluid primordial matter


A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.