Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Energy: Nuclear
Published Observing mammalian cells with superfast soft X-rays



Researchers have developed a new technique to view living mammalian cells. The team used a powerful laser, called a soft X-ray free electron laser, to emit ultrafast pulses of illumination at the speed of femtoseconds, or quadrillionths of a second. With this they could capture images of carbon-based structures in living cells for the first time, before the soft X-ray radiation damaged them.
Published Breakthrough discovery uses engineered surfaces to shed heat



Splash a few drops of water on a hot pan and if the pan is hot enough, the water will sizzle and the droplets of water seem to roll and float, hovering above the surface. The temperature at which this phenomenon, called the Leidenfrost effect, occurs is predictable, usually happening above 230 degrees Celsius. A team has now discovered a method to create the aquatic levitation at a much lower temperature.
Published Charting a pathway to next-gen biofuels



From soil to sequestration, researchers have modeled what a supply chain for second-generation biofuels might look like in the midwestern United States.
Published Iron could be key to less expensive, greener lithium-ion batteries, research finds



Chemistry researchers are hoping to spark a green battery revolution by showing that iron instead of cobalt and nickel can be used as a cathode material in lithium-ion batteries.
Published New milestone for lithium metal batteries



Scientists develop a porous structures for lithium metal batteries.
Published Shedding light on the chemical enigma of sulfur trioxide in the atmosphere



Researchers discovered that sulfur trioxide can form products other than sulfuric acid in the atmosphere by interacting with organic and inorganic acids. These previously uncharacterized acid sulfuric anhydride products are almost certainly key contributors to atmospheric new particle formation and a way to efficiently incorporate carboxylic acids into atmospheric nanoparticles. Better prediction of aerosol formation can help curb air pollution and reduce uncertainties concerning climate change.
Published Producing novel liquid crystals by stacking antiaromatic units



In a recent study, researchers developed modified norcorrole molecules whose side chains favored the formation of columnar -stacking structures. Using these compounds, they produced liquid crystals with high electrical conductivity and thermotropic properties. Their findings open up new design avenues for materials useful in electronics, sensing, optics, and biomedicine.
Published Unlocking complex sulfur molecules: Novel approach for synthesis of functionalized benzenethiol equivalents



Organosulfur skeletons are crucial in many fields, including pharmaceuticals and electronics. Synthesizing organosulfur skeletons requires o-bromobenzenethiols. However, conventional methods face challenges due to quick oxidation and formation of highly reactive intermediates. Researchers have now developed a new method for synthesizing o-bromobenzenethiols from aryne intermediates via bromothiolation. This method can pave the way for the synthesis of new organosulfur compounds with applications in diverse fields.
Published Researchers design new metal-free porous framework materials



Researchers have used computational design methods to develop non-metal organic porous framework materials, with potential applications in areas such as catalysis, water capture or hydrogen storage.
Published Adhesive coatings can prevent scarring around medical implants



Engineers have found a way to eliminate the buildup of scar tissue around implantable devices, by coating them with a hydrogel adhesive. The material binds the device to tissue and prevents the immune system from attacking the device.
Published Promethium bound: Rare earth element's secrets exposed



Scientists have uncovered the properties of a rare earth element that was first discovered 80 years ago at the very same laboratory, opening a new pathway for the exploration of elements critical in modern technology, from medicine to space travel.
Published 'Fossilizing' cracks in infrastructure creates sealing that can even survive earthquakes



In a new study, a team of researchers used research on fossilizing techniques to create a new method for sealing cracks and fractures in rocks and bedrock using a 'concretion-forming resin'. This innovative technique has applications in a wide range of industries, from tunnel construction to long-term underground storage of hazardous materials.
Published New polystyrene recycling process could be world's first to be both economical and energy-efficient



Engineers have modeled a new way to recycle polystyrene that could become the first viable way of making the material reusable.
Published Ethylene from CO2: Building-kit catalyst



Use of the greenhouse gas CO2 as a chemical raw material would not only reduce emissions, but also the consumption of fossil feedstocks. A novel metal-free organic framework could make it possible to electrocatalytically produce ethylene, a primary chemical raw material, from CO2. Nitrogen atoms with a particular electron configuration play a critical role for the catalyst.
Published Can coal mines be tapped for rare earth elements?



A team of geologists analyzed 3,500 samples taken in and around coal mines in Utah and Colorado. Their findings open the possibility that these mines could see a secondary resource stream in the form of rare earth metals used in renewable energy and numerous other high-tech applications.
Published Seeking stronger steel, systematic look at 120 combinations of alloy elements provides clues



Investigating ways to create high-performance steel, a research team used theoretical calculations on 120 combinations of 12 alloy elements, such as aluminum and titanium, with carbon and nitrogen, while also systematically clarifying the bonding mechanism.
Published Extreme complexity in formation of rare earth mineral vital for tech industry



Researchers have unveiled that myriad, intricate factors influence the genesis and chemistry of bastnasite and rare earth carbonates, which are critically needed for today's tech industry and its hardware outputs. Their work unveils a newly acquired depth of understanding that had previously been unexplored in this field. In combination, the findings mark a significant advancement and promise to reshape our understanding of rare earth mineral formation.
Published Magnetic imprint on deconfined nuclear matter



Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.
Published Can we revolutionize the chemical industry and create a circular economy? Yes, with the help of catalysts



A new commentary paper puts forth a transformative solution to the unsustainable reliance on fossil resources by the chemical industry: catalysis to leverage sustainable waste resources, ushering the industry from a linear to a circular economy.
Published Chemists develop new method for making gamma chiral centers on simple carboxylic acids



C-H activation-based method should speed drug molecule design and diversification.