Showing 20 articles starting at article 421
< Previous 20 articles Next 20 articles >
Categories: Energy: Nuclear, Offbeat: Paleontology and Archeology
Published Hackmanite mineral changes color also upon exposure to nuclear radiation


Researchers have long studied the color-changing properties of the natural mineral hackmanite upon exposure to UV radiation or X-rays. Now, the research group studied the reactions of synthetic hackmanite to nuclear radiation. The researchers discovered a one-of-a-kind and novel intelligent quality, gamma exposure memory, which allows the use of hackmanite as e.g. radiation detector.
Published Pushing the boundaries of chemistry: Properties of heaviest element studied so far measured at GSI/FAIR


Researchers have gained new insights into the chemical properties of the superheavy element flerovium -- element 114 -- at the accelerator facilities of the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt. The measurements show that flerovium is the most volatile metal in the periodic table.
Published Less risk, less costs: Portable spectroscopy devices could soon become real


Nuclear magnetic resonance (NMR) is an analytical tool with a wide range of applications, including the magnetic resonance imaging that is used for diagnostic purposes in medicine. However, NMR often requires powerful magnetic fields to be generated, which limits the scope of its use. Researchers have now discovered potential new ways to reduce the size of the corresponding devices and also the possible associated risk by eliminating the need for strong magnetic fields. This is achieved by combining so-called zero- to ultralow-field NMR with a special hyperpolarization technique.
Published Particles pick pair partners differently in small nuclei


The protons and neutrons that build the nucleus of the atom frequently pair up. Now, a new high-precision experiment has found that these particles may pick different partners depending on how packed the nucleus is. The data also reveal new details about short-distance interactions between protons and neutrons in nuclei and may impact results from experiments seeking to tease out further details of nuclear structure.
Published Elemental research: Scientists apply boron to tungsten components in fusion facilities


Scientists at have conducted research showing that a powder dropper can successfully drop boron powder into high-temperature plasma within tokamaks that have parts made of a heat-resistant material known as tungsten.
Published The electron slow motion: Ion physics on the femtosecond scale


How do different materials react to the impact of ions? This is a question that plays an important role in many areas of research -- for example in nuclear fusion research, when the walls of the fusion reactor are bombarded by high-energy ions. However, it is difficult to understand the temporal sequence of such processes. A research group has now succeeded in analyzing on a time scale of one femtosecond what happens to the individual particles involved when an ion penetrates materials such as graphene or molybdenum disulphide.
Published 2D array of electron and nuclear spin qubits opens new frontier in quantum science


By using photons and electron spin qubits to control nuclear spins in a two-dimensional material, researchers have opened a new frontier in quantum science and technology, enabling applications like atomic-scale nuclear magnetic resonance spectroscopy, and to read and write quantum information with nuclear spins in 2D materials.
Published Upgrade for magnetic resonance methods with a 1,000-fold amplifier


Researchers determine the structure and dynamics of proteins using NMR (Nuclear Magnetic Resonance) spectroscopy. Until now, however, much higher concentrations were necessary for in-vitro measurements of the biomolecules in solution than found in our body's cells. An NMR method enhanced by a very powerful amplifier, in combination with molecular dynamics simulation, now enables their detection and accurate characterization at physiological concentrations.
Published A better way to quantify radiation damage in materials


Researchers find much of the damage inside nuclear reactors is so small that it has eluded previous tests. Their new tool provides a way to directly measure this damage, potentially opening a path for the safe operation of nuclear power plants far beyond their present licensed lifetimes.
Published Suspended sediment reduced by rapid revegetation after Fukushima decontamination


Researchers have found that soil decontamination efforts following the Fukushima nuclear accident resulted in constant, high levels of suspended river sediment downstream, but a rapid decrease in the amount of particulate radiocesium. Additionally, the rapid recovery of vegetation reduced the duration of unsustainable sediment effects. Future remediation projects should assess the natural restoration ability of local landscapes, and include appropriate revegetation measures to reduce the effects on downstream environments.
Published Listening to the people results in a more sustainable future energy system


By taking into account the demographics and preferences of US racial groups, clarified through a nationally representative survey of 3,000 US residents, researchers have created a 'desirable' electricity generation mix for 2050 that includes 50% more energy from renewables than current projections. Combining such bottom-up input with top-down energy system goals set by policymakers could help meet both the needs and preferences of the population along with emission and climate goals.
Published Smaller, stronger magnets could improve devices that harness the fusion power of the sun and stars


PPPL researchers have found a way to build powerful magnets smaller than before, aiding the design and construction of machines that could help the world harness the power of the sun to create electricity without producing greenhouse gases that contribute to climate change.
Published Chemists unlock secrets of molten salts


Researchers have come up with a novel way to study the thermodynamic properties of molten salts, which are used in many nuclear and solar energy applications.
Published Go with the flow: New findings about moving electricity could improve fusion devices


Researchers have found that updating a mathematical model to include a physical property known as resistivity could lead to the improved design of doughnut-shaped fusion facilities known as tokamaks.
Published Scientists propose solution to a long-puzzling fusion problem


Researchers demonstrate explanation of paradox that could apply to all spherical tokamaks, cost-effective candidates to model a fusion pilot plant.
Published X-rays help researchers piece together treasured cellular gateway


After almost two decades of synchrotron experiments, scientists have captured a clear picture of a cell's nuclear pores, which are the doors and windows through which critical material in your body flows in and out of the cell's nucleus. These findings could lead to new treatments of certain cancers, autoimmune diseases and heart conditions.
Published Laser creates a miniature magnetosphere


A research team realized magnetic reconnection driven by electron dynamics in laser-produced plasmas and measured the pure electron outflows. Their findings will be applied not only to space and astrophysical plasmas, but also to magnetic propulsion and fusion plasmas.
Published New feedback system can improve efficiency of fusion reactions


Scientists have refined the use of magnetic fields to improve the performance of doughnut-shaped fusion facilities known as tokamaks. The improved technique protects internal parts from damage by instabilities and allows tokamaks to operate for longer without pausing.
Published Chemists design chemical probe for detecting minute temperature shifts in the body


A chemistry team has engineered a cobalt complex to act as a noninvasive chemical thermometer. They've done so by making the cobalt complex's nuclear spin -- a workhorse, fundamental magnetic property -- mimic the agile, but less stable sensitivity of an electron's spin.
Published Physicists announce first results from The Daya Bay Neutrino Experiment's final dataset


Over nearly nine years, the Daya Bay Reactor Neutrino Experiment captured an unprecedented five and a half million interactions from subatomic particles called neutrinos. Now, the international team of physicists has reported the first result from the experiment's full dataset -- the most precise measurement yet of theta13, a key parameter for understanding how neutrinos change their 'flavor.' The result will help physicists explore some of the biggest mysteries surrounding the nature of matter and the universe.