Showing 20 articles starting at article 201

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry, Energy: Technology

Return to the site home page

Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Cement recycling method could help solve one of the world's biggest climate challenges      (via sciencedaily.com)     Original source 

Researchers have developed a method to produce very low emission concrete at scale -- an innovation that could be transformative in the transition to net zero. The method, which the researchers say is 'an absolute miracle', uses the electrically-powered arc furnaces used for steel recycling to simultaneously recycle cement, the carbon-hungry component of concrete.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Earth Science Geoscience: Geochemistry
Published

Promethium bound: Rare earth element's secrets exposed      (via sciencedaily.com)     Original source 

Scientists have uncovered the properties of a rare earth element that was first discovered 80 years ago at the very same laboratory, opening a new pathway for the exploration of elements critical in modern technology, from medicine to space travel.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Under extreme impacts, metals get stronger when heated, study finds      (via sciencedaily.com)     Original source 

Scientists have discovered that when metal is struck by an object moving at a super high velocity, the heat makes the metal stronger. The finding could lead to new approaches to designing materials for extreme environments, such as shields that protect spacecraft or equipment for high-speed manufacturing.

Energy: Technology Physics: Optics
Published

Streamlined microcomb design provides control with the flip of a switch      (via sciencedaily.com)     Original source 

Researchers describe new microcomb lasers they have developed that overcome previous limitations and feature a simple design that could open the door to a broad range of uses.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General
Published

Ethylene from CO2: Building-kit catalyst      (via sciencedaily.com)     Original source 

Use of the greenhouse gas CO2 as a chemical raw material would not only reduce emissions, but also the consumption of fossil feedstocks. A novel metal-free organic framework could make it possible to electrocatalytically produce ethylene, a primary chemical raw material, from CO2. Nitrogen atoms with a particular electron configuration play a critical role for the catalyst.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New crystal production method could enhance quantum computers and electronics      (via sciencedaily.com)     Original source 

Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.

Energy: Technology Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Recycling carbon dioxide into household chemicals      (via sciencedaily.com)     Original source 

Scientists report a family of tin-based catalysts that efficiently converts CO2 into ethanol, acetic acid and formic acid. These liquid hydrocarbons are among the most produced chemicals in the U.S and are found in many commercial products.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Researchers introduce programmable materials to help heal broken bones      (via sciencedaily.com)     Original source 

Natural materials like bone, bird feathers and wood have an intelligent approach to physical stress distribution, despite their irregular architectures. However, the relationship between stress modulation and their structures has remained elusive. A new study that integrates machine learning, optimization, 3D printing and stress experiments allowed engineers to gain insight into these natural wonders by developing a material that replicates the functionalities of human bone for orthopedic femur restoration.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Technology Engineering: Nanotechnology
Published

Powering wearable devices with high-performing carbon nanotube yarns      (via sciencedaily.com)     Original source 

Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

By listening, scientists learn how a protein folds      (via sciencedaily.com)     Original source 

By converting their data into sounds, scientists discovered how hydrogen bonds contribute to the lightning-fast gyrations that transform a string of amino acids into a functional, folded protein. Their report offers an unprecedented view of the sequence of hydrogen-bonding events that occur when a protein morphs from an unfolded to a folded state.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Enhancing superconductivity of graphene-calcium superconductors      (via sciencedaily.com)     Original source 

Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Seeking stronger steel, systematic look at 120 combinations of alloy elements provides clues      (via sciencedaily.com)     Original source 

Investigating ways to create high-performance steel, a research team used theoretical calculations on 120 combinations of 12 alloy elements, such as aluminum and titanium, with carbon and nitrogen, while also systematically clarifying the bonding mechanism.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Expanding on the fundamental principles of liquid movement      (via sciencedaily.com)     Original source 

We are living in a world surrounded by liquid and flow, and understanding the principles that govern its movement is vital in our high-tech world. Through mathematical modeling and experimentation, researchers have expanded on Tanner's Law -- a law in fluid dynamics that describes how non-volatile liquids move across surfaces -- to cover a wider range of volatile liquids. These findings have the potential to play a role in various liquid-based industries such as electronics cooling.

Chemistry: Inorganic Chemistry Energy: Nuclear Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Magnetic imprint on deconfined nuclear matter      (via sciencedaily.com)     Original source 

Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.

Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Geoscience: Environmental Issues
Published

New data-driven model rapidly predicts dehydrogenation barriers in solid-state materials      (via sciencedaily.com)     Original source 

Researchers have developed a groundbreaking data-driven model to predict the dehydrogenation barriers of magnesium hydride, a promising material for solid-state hydrogen storage. This advancement holds significant potential for enhancing hydrogen storage technologies, a crucial component in the transition to sustainable energy solutions.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics
Published

Diamond glitter: A play of colors with artificial DNA crystals      (via sciencedaily.com)     Original source 

Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Breaking bonds to form bonds: Rethinking the Chemistry of Cations      (via sciencedaily.com)     Original source 

A team of chemists has achieved a significant breakthrough in the field of chemical synthesis, developing a novel method for manipulating carbon-hydrogen bonds. This groundbreaking discovery provides new insights into the molecular interactions of positively charged carbon atoms. By selectively targeting a specific C--H bond, they open doors to synthetic pathways that were previously closed -- with potential applications in medicine.