Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Energy: Alternative Fuels, Energy: Technology
Published Indoor solar cells that maximize the use of light energy



Chemists have synthesized materials that can improve solar elements for indoor use. Such photovoltaic cells, which can also be integrated into various electronic devices, generate electricity even in low-light conditions.
Published Energy planning in Ghana as a role model for the world



Researchers are investigating ways to better plan for climate-resilient energy systems in the Global South. Focusing on the case study of Accra, the capital of Ghana, the multidisciplinary team expanded conventional energy system modeling approaches by incorporating a range of socio-techno-economic challenges, climate change impacts, and resilience metrics into their models. Their approaches are applicable worldwide to support widespread sustainable and resilient energy system transitions.
Published A recipe for zero-emissions fuel: Soda cans, seawater, and caffeine



Engineers discovered that when the aluminum in soda cans is purified and mixed with seawater, the solution produces hydrogen -- which can power an engine or fuel cell without generating carbon emissions. The reaction can be sped up by adding caffeine.
Published Next-gen cooling system to help data centers become more energy efficient



Artificial intelligence (AI) is hot right now. Also hot: the data centers that power the technology. And keeping those centers cool requires a tremendous amount of energy. The problem is only going to grow as high-powered AI-based computers and devices become commonplace. That's why researchers are devising a new type of cooling system that promises to dramatically reduce energy demands.
Published Better way to produce green hydrogen



Researchers have developed a material that shows a remarkable ability to convert sunlight and water into clean energy.
Published A single-molecule-based organic porous material with great potential for efficient ammonia storage



Novel porous crystalline solid shows promise as an efficient and durable material for ammonia (NH3) capture and storage, report scientists. Made through a simple reprecipitation process, the proposed organic compound can reversibly adsorb and release NH3 via simple pressurization and decompression at room temperature. Its stability and cost-effectiveness make this material a promising energy carrier for future hydrogen economies.
Published Manufacturing perovskite solar panels with a long-term vision



Researchers working at the forefront of an emerging photovoltaic (PV) technology are thinking ahead about how to scale, deploy, and design future solar panels to be easily recyclable. Solar panels made of perovskites may eventually play an important role amid global decarbonization efforts to reduce greenhouse gas emissions. As the technology emerges from the testing stages, it is a perfect time to think critically about how best to design the solar panels to minimize their impact on the environment decades from now.
Published 3D-printed microstructure forest facilitates solar steam generator desalination



Faced with the world's impending freshwater scarcity, researchers turned to solar steam generators, which are emerging as a promising device for seawater desalination. The team sought design inspiration from trees and harnessed the potential of 3D printing. They present technology for producing efficient SSGs for desalination and introduces a novel method for printing functional nanocomposites for multi-jet fusion. Their SSGs were inspired by plant transpiration and are composed of miniature tree-shaped microstructures, forming an efficient, heat-distributing forest.
Published Strategic emission caps key to ammonia industry decarbonization, researchers find



New research has revealed critical insights into how strategic emission cap choices can lead to cost-effective, near-100% ammonia industry decarbonization while avoiding issues such as land use constraints and grid congestion.
Published Maximizing hydrogen peroxide formation during water electrolysis



When water is split electrolytically, the result is typically hydrogen -- and 'useless' oxygen. Instead of oxygen, you can also produce hydrogen peroxide, which is required for many branches of industry. This, however, requires certain reaction conditions.
Published Cracking the code of hydrogen embrittlement



When deciding what material to use for infrastructure projects, metals are often selected for their durability. However, if placed in a hydrogen-rich environment, like water, metals can become brittle and fail. Since the mid-19th century, this phenomenon, known as hydrogen embrittlement, has puzzled researchers with its unpredictable nature. Now, a study brings us a step closer to predicting it with confidence.
Published 'Secret' hidden structure paves new way of making more efficient and stable perovskite solar cells



Researchers has revealed the existence of surface concavities on individual crystal grains -- which are the fundamental blocks -- of perovskite thin films, and have unraveled their significant effects on the film properties and reliability. Based on this discovery, the team pioneered a new way of making perovskite solar cells more efficient and stable via a chemo-elimination of these grain surface concavities.
Published Solar farms with stormwater controls mitigate runoff, erosion, study finds



As the number of major utility-scale ground solar panel installations grows, concerns about their impacts on natural hydrologic processes also have grown. However, a new study by Penn State researchers suggests that excess runoff or increased erosion can be easily mitigated -- if these 'solar farms' are properly built.
Published Novel electrode for improving flowless zinc-bromine battery



The flowless zinc-bromine battery (FLZBB) is a promising alternative to flammable lithium-ion batteries due to its use of non-flammable electrolytes. However, it suffers from self-discharge due to the crossover of active materials, generated at the positive graphite felt (GF) electrode, to the negative electrode, significantly affecting performance. Now, researchers have developed a novel nitrogen-doped mesoporous carbon-coated GF electrode that effectively suppresses self-discharge. This breakthrough can lead to practical applications of FLZBB in energy storage systems.
Published Soft, stretchy 'jelly batteries' inspired by electric eels



Researchers have developed soft, stretchable 'jelly batteries' that could be used for wearable devices or soft robotics, or even implanted in the brain to deliver drugs or treat conditions such as epilepsy.
Published Aussie innovation spearheads cheaper seafloor test for offshore wind farms



Australian engineers have unveiled a clever new device -- based on a modified speargun -- as a cheap and efficient way to test seabed soil when designing offshore wind farms.
Published Producing hydrogen and fertilizer at the same time



This new concept could allow the needs of previously separate industries to be combined: the production of hydrogen and the production of fertilizer.
Published A chemical claw machine bends and stretches when exposed to vapors



Scientists have developed a tiny 'claw machine' that is able to pick up and drop a marble-sized ball in response to exposure to chemical vapors. The findings point to a technique that can enable soft actuators--the parts of a machine that make it move--to perform multiple tasks without the need for additional costly materials. While existing soft actuators can be 'one-trick ponies' restricted to one type of movement, this novel composite film contorts itself in different ways depending on the vapor that it is exposed to.
Published Engineers' probe could help advance treatment for spinal cord disease, injury



Neuroscientists have used a nanosized sensor to record spinal cord neurons in free-moving mice, a feat that could lead to the development of better treatments for spinal cord disease and injury.
Published Hydrogen flight looks ready for take-off with new advances



The possibility of hydrogen-powered flight means greater opportunities for fossil-free travel, and the technological advances to make this happen are moving fast. New studies show that almost all air travel within a 750-mile radius (1200 km) could be made with hydrogen-powered aircraft by 2045, and with a novel heat exchanger currently in development, this range could be even further.