Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Energy: Nuclear, Energy: Technology
Published Controlling ion transport for a blue energy future



Researchers probed the transit of cations across a nanopore membrane for the generation of osmotic energy. The team controlled the passage of cations across the membrane using a voltage applied to a gate electrode. This control allowed the cation-selective transport to be tuned from essentially zero to complete cation selectivity. The findings are expected to support the application of blue energy solutions for sustainable energy alternatives worldwide.
Published Study is step towards energy-efficient quantum computing in magnets



Researchers have managed to generate propagating spin waves at the nanoscale and discovered a novel pathway to modulate and amplify them. Their discovery could pave the way for the development of dissipation free quantum information technologies. As the spin waves do not involve electric currents these chips will be free from associated losses of energy. The rapidly growing popularity of artificial intelligence comes with an increasing desire for fast and energy efficient computing devices and calls for novel ways to store and process information. The electric currents in conventional devices suffer from losses of energy and subsequent heating of the environment.
Published Wind farms are cheaper than you think -- and could have prevented Fukushima, says global review



Offshore wind could have prevented the Fukushima disaster, according to a review of wind energy.
Published 'The magic of making electricity from metals and air' The vexing carbonate has achieved it!



Team develops a high-energy, high-efficiency all-solid-state Na-air battery platform.
Published Harnessing green energy from plants depends on their circadian rhythms



Plant hydraulics drive the biological process that moves fluids from roots to plant stems and leaves, creating streaming electric potential, or voltage, in the process. A study closely examined the differences in voltage caused by the concentrations of ions, types of ions, and pH of the fluid plants transport, tying the voltage changes to the plant's circadian rhythm that causes adjustments day and night. According to the authors, this consistent, cyclic voltage creation could be harnessed as an energy source.
Published Apple versus donut: How the shape of a tokamak impacts the limits of the edge of the plasma



A new model for ballooning instabilities in apple-shaped fusion vessels considers the height and width of the plasma's edge.
Published Charge your laptop in a minute or your EV in 10? Supercapacitors can help



Imagine if your dead laptop or phone could charge in a minute or if an electric car could be fully powered in 10 minutes. New research could lead to such advances.
Published Controlling water, transforming greenhouse gases



Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.
Published Breakthrough discovery uses engineered surfaces to shed heat



Splash a few drops of water on a hot pan and if the pan is hot enough, the water will sizzle and the droplets of water seem to roll and float, hovering above the surface. The temperature at which this phenomenon, called the Leidenfrost effect, occurs is predictable, usually happening above 230 degrees Celsius. A team has now discovered a method to create the aquatic levitation at a much lower temperature.
Published Renewable grid: Recovering electricity from heat storage hits 44% efficiency



Closing in on the theoretical maximum efficiency, devices for turning heat into electricity are edging closer to being practical for use on the grid, according to new research.
Published Electromechanical material doesn't get 'clamped' down



A new study finds that a class of electromechanically active materials called antiferroelectrics may hold the key to overcoming performance limitations due to clamping in miniaturized electromechanical systems.
Published Charting a pathway to next-gen biofuels



From soil to sequestration, researchers have modeled what a supply chain for second-generation biofuels might look like in the midwestern United States.
Published Iron could be key to less expensive, greener lithium-ion batteries, research finds



Chemistry researchers are hoping to spark a green battery revolution by showing that iron instead of cobalt and nickel can be used as a cathode material in lithium-ion batteries.
Published Cement recycling method could help solve one of the world's biggest climate challenges



Researchers have developed a method to produce very low emission concrete at scale -- an innovation that could be transformative in the transition to net zero. The method, which the researchers say is 'an absolute miracle', uses the electrically-powered arc furnaces used for steel recycling to simultaneously recycle cement, the carbon-hungry component of concrete.
Published New polystyrene recycling process could be world's first to be both economical and energy-efficient



Engineers have modeled a new way to recycle polystyrene that could become the first viable way of making the material reusable.
Published Streamlined microcomb design provides control with the flip of a switch



Researchers describe new microcomb lasers they have developed that overcome previous limitations and feature a simple design that could open the door to a broad range of uses.
Published Recycling carbon dioxide into household chemicals



Scientists report a family of tin-based catalysts that efficiently converts CO2 into ethanol, acetic acid and formic acid. These liquid hydrocarbons are among the most produced chemicals in the U.S and are found in many commercial products.
Published Powering wearable devices with high-performing carbon nanotube yarns



Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.
Published Magnetic imprint on deconfined nuclear matter



Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.
Published More efficient bioethanol production might be possible using persimmon tannin to help yeast thrive



Researchers have found that persimmon tannin, known for its antioxidant properties, improves the growth of yeast in the presence of ethanol.