Showing 20 articles starting at article 441
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Space: Astrophysics
Published Interpreting the afterglow of a black hole's breakfast



An entirely new way to probe how active black holes behave when they eat has been discovered by an international team of astronomers.
Published Tracking undetectable space junk



Satellite and spacecraft operators may finally be able to detect small pieces of debris orbiting Earth using a new approach. Colliding pieces of space debris emit electric signals that could help track small debris littering Earth's orbit, potentially saving satellites and spacecraft.
Published 10-billion-year, 50,000-light-year journey to black hole



A star near the supermassive black hole at the center of the Milky Way Galaxy originated outside of the Galaxy according to a new study. This is the first time a star of extragalactic origin has been found in the vicinity of the super massive black hole.
Published New theory unites Einstein's gravity with quantum mechanics



The prevailing assumption has been that Einstein's theory of gravity must be modified, or 'quantized', in order to fit within quantum theory. This is the approach of two leading candidates for a quantum theory of gravity, string theory and loop quantum gravity. But a new theory challenges that consensus and takes an alternative approach by suggesting that spacetime may be classical -- that is, not governed by quantum theory at all.
Published Quantum physics: Superconducting Nanowires Detect Single Protein Ions



An international research team has achieved a breakthrough in the detection of protein ions: Due to their high energy sensitivity, superconducting nanowire detectors achieve almost 100% quantum efficiency and exceed the detection efficiency of conventional ion detectors at low energies by a factor of up to a 1,000. In contrast to conventional detectors, they can also distinguish macromolecules by their impact energy. This allows for more sensitive detection of proteins and it provides additional information in mass spectrometry.
Published Dark galactic region nicknamed 'The Brick' explained with Webb telescope findings



Using the James Webb Space Telescope, astronomers spot unexpected source of carbon monoxide ice at galactic region surprisingly devoid of stars.
Published Ghostlike dusty galaxy reappears in James Webb Space Telescope image



Astronomers studying images from the James Webb Space Telescope have identified an object as a 'dusty star-forming galaxy' from nearly 1 billion years after the Big Bang. They have also discovered more than a dozen additional candidates, suggesting these galaxies might be three to 10 times as common as expected. If that conclusion is confirmed, it suggests the early universe was much dustier than previously thought.
Published Meteorites likely source of nitrogen for early Earth



Micrometeorites originating from icy celestial bodies in the outer Solar System may be responsible for transporting nitrogen to the near-Earth region in the early days of our solar system.
Published A new possible explanation for the Hubble tension



The universe is expanding. How fast it does so is described by the so-called Hubble-Lemaitre constant. But there is a dispute about how big this constant actually is: Different measurement methods provide contradictory values. This so-called 'Hubble tension' poses a puzzle for cosmologists. Researchers are now proposing a new solution: Using an alternative theory of gravity, the discrepancy in the measured values can be easily explained -- the Hubble tension disappears.
Published Discovery of planet too big for its sun throws off solar system formation models



The discovery of a planet that is far too massive for its sun is calling into question what was previously understood about the formation of planets and their solar systems.
Published Scientists use A.I.-generated images to map visual functions in the brain



Researchers have demonstrated the use of AI-selected natural images and AI-generated synthetic images as neuroscientific tools for probing the visual processing areas of the brain. The goal is to apply a data-driven approach to understand how vision is organized while potentially removing biases that may arise when looking at responses to a more limited set of researcher-selected images.
Published Smart microgrids can restore power more efficiently and reliably in an outage



A new AI model that optimizes the use of renewables and other energy sources outperforms traditional power restoration techniques for islanded microgrids, a new paper shows.
Published Rocky planets can form in extreme environments



Astronomers have provided the first observation of water and other molecules in the highly irradiated inner, rocky-planet-forming regions of a disk in one of the most extreme environments in our galaxy. These results suggest that the conditions for terrestrial planet formation can occur in a possible broader range of environments than previously thought.
Published Researchers show an old law still holds for quirky quantum materials



Long before researchers discovered the electron and its role in generating electrical current, they knew about electricity and were exploring its potential. One thing they learned early on was that metals were great conductors of both electricity and heat. And in 1853, two scientists showed that those two admirable properties of metals were somehow related: At any given temperature, the ratio of electronic conductivity to thermal conductivity was roughly the same in any metal they tested. This so-called Wiedemann-Franz law has held ever since -- except in quantum materials. Now, a theoretical argument put forth by physicists suggests that the law should, in fact, approximately hold for one type of quantum material, the cuprate superconductors.
Published Building blocks for life could have formed near new stars and planets



While life on Earth is relatively new, geologically speaking, the ingredients that combined to form it might be much older than once thought. The simplest amino acid, carbamic acid, could have formed alongside stars or planets within interstellar ices. The findings could be used to train deep space instruments like the James Webb Space Telescope to search for prebiotic molecules in distant, star-forming regions of the universe.
Published New astrophysics model sheds light on additional source of long gamma-ray bursts



Cutting-edge computer simulations combined with theoretical calculations are helping astronomers better understand the origin of some of the universe's most energetic and mysterious light shows -- gamma-ray bursts, or GRBs. The new unified model confirms that some long-lasting GRBs are created in the aftermath of cosmic mergers that spawn an infant black hole surrounded by a giant disk of natal material.
Published Astronomers discover disc around star in another galaxy



In a remarkable discovery, astronomers have found a disc around a young star in the Large Magellanic Cloud, a galaxy neighboring ours. It's the first time such a disc, identical to those forming planets in our own Milky Way, has ever been found outside our galaxy. The new observations reveal a massive young star, growing and accreting matter from its surroundings and forming a rotating disc.
Published The secret life of an electromagnon



Scientists have revealed how lattice vibrations and spins talk to each other in a hybrid excitation known as an electromagnon. To achieve this, they used a unique combination of experiments on an X-ray free electron laser. Understanding this fundamental process at the atomic level opens the door to ultrafast control of magnetism with light.
Published Solar activity likely to peak next year



Researchers have discovered a new relationship between the Sun's magnetic field and its sunspot cycle, that can help predict when the peak in solar activity will occur. Their work indicates that the maximum intensity of solar cycle 25, the ongoing sunspot cycle, is imminent and likely to occur within a year.
Published Nextgen computing: Hard-to-move quasiparticles glide up pyramid edges



A new kind of 'wire' for moving excitons could help enable a new class of devices, perhaps including room temperature quantum computers.