Showing 20 articles starting at article 621

< Previous 20 articles        Next 20 articles >

Categories: Energy: Technology, Space: Astrophysics

Return to the site home page

Chemistry: Organic Chemistry Energy: Fossil Fuels Energy: Technology Geoscience: Environmental Issues
Published

Groundbreaking green propane production method      (via sciencedaily.com) 

New research reveals a promising breakthrough in green energy: an electrolyzer device capable of converting carbon dioxide into propane in a manner that is both scalable and economically viable.

Chemistry: Inorganic Chemistry Energy: Technology Physics: General Physics: Quantum Physics
Published

Demon hunting: Physicists confirm 67-year-old prediction of massless, neutral composite particle      (via sciencedaily.com) 

In 1956, theoretical physicist David Pines predicted that electrons in a solid can do something strange. While they normally have a mass and an electric charge, Pines asserted that they can combine to form a composite particle that is massless, neutral, and does not interact with light. He called this particle a 'demon.' Now, researchers have finally found Pines' demon 67 years after it was predicted.

Offbeat: Space Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

New type of star gives clues to mysterious origin of magnetars      (via sciencedaily.com)     Original source 

Magnetars are the strongest magnets in the Universe. These super-dense dead stars with ultra-strong magnetic fields can be found all over our galaxy but astronomers don't know exactly how they form. Now, using multiple telescopes around the world, researchers have uncovered a living star that is likely to become a magnetar. This finding marks the discovery of a new type of astronomical object -- massive magnetic helium stars -- and sheds light on the origin of magnetars.

Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: General
Published

Using supernovae to study neutrinos' strange properties      (via sciencedaily.com) 

In a new study, researchers have taken an important step toward understanding how exploding stars can help reveal how neutrinos, mysterious subatomic particles, secretly interact with themselves.

Chemistry: Organic Chemistry Energy: Technology Geoscience: Environmental Issues
Published

Researchers design efficient iridium catalyst for hydrogen generation      (via sciencedaily.com) 

Proton exchange membrane water electrolyzers converts surplus electric energy into transportable hydrogen energy as a clean energy solution. However, slow oxygen evolution reaction rates and high loading levels of expensive metal oxide catalysts limit its practical feasibility. Now, researchers have developed a new tantalum oxide-supported iridium catalyst that significantly boosts the oxygen evolution reaction speed. Additionally, it shows high catalytic activity and long-term stability in prolonged single cell operation.

Biology: Microbiology Energy: Technology
Published

Microbial corrosion of iron      (via sciencedaily.com) 

Iron is well-known for rusting, but this doesn't just happen on contact with oxygen and water. Some bacteria are also able to able to decompose iron anaerobically in a process referred to as electrobiocorrosion. The sediment-dwelling bacterium Geobacter sulfurreducens uses electrically conductive protein threads for this purpose. They produce magnetite from the iron, which promotes further corrosion in a positive feedback loop.

Energy: Technology Physics: General
Published

Zentropy and the art of creating new ferroelectric materials      (via sciencedaily.com) 

Systems in the Universe trend toward disorder, with only applied energy keeping the chaos at bay. The concept is called entropy, and examples can be found everywhere: ice melting, campfire burning, water boiling. Zentropy theory, however, adds another level to the mix.

Energy: Batteries Energy: Technology
Published

Chloride ions from seawater eyed as possible lithium replacement in batteries of the future      (via sciencedaily.com) 

Sodium, Potassium and zinc have all been promising contenders for lithium's place in rechargeable batteries of the future, but researchers have added an unusual and more abundant competitor to the mix: chloride, the richest negatively charged ions in seawater. Xiaowei Teng, the James H. Manning professor of Chemical Engineering at WPI, has discovered a new redox chemistry empowered by chloride ions for the development of seawater green batteries.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Webb reveals colors of Earendel, most distant star ever detected      (via sciencedaily.com) 

NASA's James Webb Space Telescope has followed up on observations by the Hubble Space Telescope of the farthest star ever detected in the very distant universe, within the first billion years after the big bang. Webb's NIRCam (Near-Infrared Camera) instrument reveals the star to be a massive B-type star more than twice as hot as our Sun, and about a million times more luminous.

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Quantum Computers Energy: Technology Engineering: Nanotechnology Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum material exhibits 'non-local' behavior that mimics brain function      (via sciencedaily.com) 

New research shows that electrical stimuli passed between neighboring electrodes can also affect non-neighboring electrodes. Known as non-locality, this discovery is a crucial milestone toward creating brain-like computers with minimal energy requirements.

Chemistry: Thermodynamics Energy: Technology Engineering: Nanotechnology
Published

Single drop of ethanol to revolutionize nanosensor manufacture      (via sciencedaily.com) 

Engineers have developed a breakthrough technique to make the processing of nanosensors cheaper, greener and more effective by using a single drop of ethanol to replace heat processing of nanoparticle networks, allowing a wider range of materials to be used to make these sensors.

Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Scientists discover the highest-energy light coming from the sun      (via sciencedaily.com) 

New research details the discovery of the highest-energy light ever observed from the sun. The international team behind the discovery also found that this type of light, known as gamma rays, is surprisingly bright. That is, there's more of it than scientists had previously anticipated.

Space: Astronomy Space: Astrophysics Space: Exploration Space: Structures and Features Space: The Solar System
Published

James Webb Space Telescope captures stunning images of the Ring Nebula      (via sciencedaily.com) 

NASA's James Webb Space Telescope has recorded breath-taking new images of the iconic Ring Nebula, also known as Messier 57.

Energy: Technology Geoscience: Environmental Issues
Published

Mussel-inspired membrane can boost sustainability and add value to industrial wastewater treatment      (via sciencedaily.com) 

Engineers have developed a new kind of membrane that separates chemicals within wastewater so effectively that they can be reused, presenting a new opportunity for industries to improve sustainability, while extracting valuable by-products and chemicals from wastewater.

Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: Structures and Features Space: The Solar System
Published

Gravitational arcs in 'El Gordo' galaxy cluster      (via sciencedaily.com) 

A new image of the galaxy cluster known as 'El Gordo' is revealing distant and dusty objects never seen before, and providing a bounty of fresh science. The infrared image displays a variety of unusual, distorted background galaxies that were only hinted at in previous Hubble Space Telescope images.

Energy: Batteries Energy: Technology
Published

Faster thin film devices for energy storage and electronics      (via sciencedaily.com) 

An international research team reported the first realization of single-crystalline T-Nb2O5 thin films having two-dimensional (2D) vertical ionic transport channels, which results in a fast and colossal insulator-metal transition via Li ion intercalation through the 2D channels.

Energy: Batteries Energy: Technology Engineering: Nanotechnology
Published

Cracking in lithium-ion batteries speeds up electric vehicle charging      (via sciencedaily.com) 

Rather than being solely detrimental, cracks in the positive electrode of lithium-ion batteries reduce battery charge time, research shows. This runs counter to the view of many electric vehicle manufacturers, who try to minimize cracking because it decreases battery longevity.

Energy: Batteries Energy: Technology Offbeat: Earth and Climate
Published

Energy-storing supercapacitor from cement, water, black carbon      (via sciencedaily.com) 

Engineers have created a 'supercapacitor' made of ancient, abundant materials, that can store large amounts of energy. Made of just cement, water, and carbon black (which resembles powdered charcoal), the device could form the basis for inexpensive systems that store intermittently renewable energy, such as solar or wind energy.

Computer Science: Quantum Computers Energy: Technology Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists create novel approach to control energy waves in 4D      (via sciencedaily.com) 

Everyday life involves the three dimensions or 3D -- along an X, Y and Z axis, or up and down, left and right, and forward and back. But, in recent years scientists have explored a 'fourth dimension' (4D), or synthetic dimension, as an extension of our current physical reality.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: The Solar System
Published

New clues on the source of the universe's magnetic fields      (via sciencedaily.com) 

Researchers offer insight into the source of cosmic magnetic fields. The research team used models to show that magnetic fields may spontaneously arise in turbulent plasma. Their simulations showed that, in addition to generating new magnetic fields, the turbulence of those plasmas can also amplify magnetic fields once they've been generated, which helps explain how magnetic fields that originate on small scales can sometimes eventually reach to stretch across vast distances.