Showing 20 articles starting at article 421
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Space: The Solar System
Published Can signs of life be detected from Saturn's frigid moon?



Researchers have shown unambiguous laboratory evidence that amino acids transported in the ice plumes of Saturn's moon, Eceladus, can survive impact speeds of up to 4.2 km/s, supporting their detection during sampling by spacecraft.
Published Tracking undetectable space junk



Satellite and spacecraft operators may finally be able to detect small pieces of debris orbiting Earth using a new approach. Colliding pieces of space debris emit electric signals that could help track small debris littering Earth's orbit, potentially saving satellites and spacecraft.
Published Quantum physics: Superconducting Nanowires Detect Single Protein Ions



An international research team has achieved a breakthrough in the detection of protein ions: Due to their high energy sensitivity, superconducting nanowire detectors achieve almost 100% quantum efficiency and exceed the detection efficiency of conventional ion detectors at low energies by a factor of up to a 1,000. In contrast to conventional detectors, they can also distinguish macromolecules by their impact energy. This allows for more sensitive detection of proteins and it provides additional information in mass spectrometry.
Published One of the largest magnetic storms in history quantified: Aurorae covered much of the night sky from the Tropics to the Polar Regions



An international multidisciplinary team consisting of solar physicists, geophysicists, and historians from nine countries analysed observations of an extreme solar-terrestrial storm reported in historical records from February 1872. Their findings confirm that a moderate sunspot group triggered one of the largest magnetic storms ever recorded, almost covering the entire night sky with colourful aurorae in both hemispheres. If such an extreme storm occurred today, it would severely disrupt modern technological infrastructure. Their study emphasizes the importance of looking at historical records in light of modern scientific knowledge.
Published Meteorites likely source of nitrogen for early Earth



Micrometeorites originating from icy celestial bodies in the outer Solar System may be responsible for transporting nitrogen to the near-Earth region in the early days of our solar system.
Published Discovery of planet too big for its sun throws off solar system formation models



The discovery of a planet that is far too massive for its sun is calling into question what was previously understood about the formation of planets and their solar systems.
Published Scientists use A.I.-generated images to map visual functions in the brain



Researchers have demonstrated the use of AI-selected natural images and AI-generated synthetic images as neuroscientific tools for probing the visual processing areas of the brain. The goal is to apply a data-driven approach to understand how vision is organized while potentially removing biases that may arise when looking at responses to a more limited set of researcher-selected images.
Published Smart microgrids can restore power more efficiently and reliably in an outage



A new AI model that optimizes the use of renewables and other energy sources outperforms traditional power restoration techniques for islanded microgrids, a new paper shows.
Published Researchers show an old law still holds for quirky quantum materials



Long before researchers discovered the electron and its role in generating electrical current, they knew about electricity and were exploring its potential. One thing they learned early on was that metals were great conductors of both electricity and heat. And in 1853, two scientists showed that those two admirable properties of metals were somehow related: At any given temperature, the ratio of electronic conductivity to thermal conductivity was roughly the same in any metal they tested. This so-called Wiedemann-Franz law has held ever since -- except in quantum materials. Now, a theoretical argument put forth by physicists suggests that the law should, in fact, approximately hold for one type of quantum material, the cuprate superconductors.
Published Building blocks for life could have formed near new stars and planets



While life on Earth is relatively new, geologically speaking, the ingredients that combined to form it might be much older than once thought. The simplest amino acid, carbamic acid, could have formed alongside stars or planets within interstellar ices. The findings could be used to train deep space instruments like the James Webb Space Telescope to search for prebiotic molecules in distant, star-forming regions of the universe.
Published The secret life of an electromagnon



Scientists have revealed how lattice vibrations and spins talk to each other in a hybrid excitation known as an electromagnon. To achieve this, they used a unique combination of experiments on an X-ray free electron laser. Understanding this fundamental process at the atomic level opens the door to ultrafast control of magnetism with light.
Published Composition of asteroid Phaethon



Asteroid Phaethon, which is five kilometers in diameter, has been puzzling researchers for a long time. A comet-like tail is visible for a few days when the asteroid passes closest to the Sun during its orbit. However, the tails of comets are usually formed by vaporizing ice and carbon dioxide, which cannot explain this tail. The tail should be visible at Jupiter's distance from the Sun.
Published Solar activity likely to peak next year



Researchers have discovered a new relationship between the Sun's magnetic field and its sunspot cycle, that can help predict when the peak in solar activity will occur. Their work indicates that the maximum intensity of solar cycle 25, the ongoing sunspot cycle, is imminent and likely to occur within a year.
Published Nextgen computing: Hard-to-move quasiparticles glide up pyramid edges



A new kind of 'wire' for moving excitons could help enable a new class of devices, perhaps including room temperature quantum computers.
Published Alien haze, cooked in a lab, clears view to distant water worlds



Scientists have simulated conditions that allow hazy skies to form in water-rich exoplanets, a crucial step in determining how haziness muddles important telescope observations for the search of habitable worlds beyond the solar system.
Published Wave devouring propulsion: A revolutionary green technology for maritime sustainability



A new form of wave devouring propulsion (WDP) could power ships and help to cut greenhouse gas emissions in the maritime industry.
Published Hybrid transistors set stage for integration of biology and microelectronics



Researchers create transistors combining silicon with biological silk, using common microprocessor manufacturing methods. The silk protein can be easily modified with other chemical and biological molecules to change its properties, leading to circuits that respond to biology and the environment.
Published Hydrogen detected in lunar samples, points to resource availability for space exploration



Researchers have discovered solar-wind hydrogen in lunar samples, which indicates that water on the surface of the Moon may provide a vital resource for future lunar bases and longer-range space exploration.
Published Long in the Bluetooth: Scientists develop a more efficient way to transmit data between our devices



Researchers have developed a more energy efficient way of connecting our personal devices. New technology consumes less power than Bluetooth and can improve battery life of tech accessories, including earbuds and fitness trackers. Future applications could see us unlocking a door by touching its handle or shaking hands to exchange phone numbers.
Published Investigating the contribution of gamma-ray blazar flares to neutrino flux



Gamma-ray flares from blazars can be accompanied by high-energy neutrino emission. To better understand this phenomenon, an international research team has statistically analyzed 145 bright blazars. They constructed weekly binned light curves and utilized a Bayesian algorithm, finding that their sample was dominated by blazars with low flare duty cycles and energy fractions. The study suggests that high-energy neutrinos of blazars might be produced mainly during the flare phase.