Showing 20 articles starting at article 821
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Space: The Solar System
Published ALMA traces history of water in planet formation back to the interstellar medium


Observations of water in the disk forming around protostar V883 Ori have unlocked clues about the formation of comets and planetesimals in our own solar system.
Published New 'camera' with shutter speed of 1 trillionth of a second sees through dynamic disorder of atoms


Researchers have developed a new 'camera' that sees the local disorder in materials. Its key feature is a variable shutter speed: because the disordered atomic clusters are moving, when the team used a slow shutter, the dynamic disorder blurred out, but when they used a fast shutter, they could see it. The method uses neutrons to measure atomic positions with a shutter speed of around one picosecond, a trillion times faster than normal camera shutters.
Published Electric vehicle batteries could get big boost with new polymer coating


Scientists have developed a polymer coating that could enable longer lasting, more powerful lithium-ion batteries for electric vehicles. The advance opens up a new approach to developing EV batteries that are more affordable and easy to manufacture.
Published The planet that could end life on Earth


A terrestrial planet hovering between Mars and Jupiter would be able to push Earth out of the solar system and wipe out life on this planet, according to a recent experiment.
Published Controlling electric double layer dynamics for next generation all-solid-state batteries


Development of all-solid-state batteries is crucial to achieve carbon neutrality. However, their high surface resistance causes these batteries to have low output, limiting their applications. To this end, researchers have employed a novel technique to investigate and modulate electric double layer dynamics at the solid/solid electrolyte interface. The researchers demonstrate unprecedented control of response speed by over two orders of magnitude, a major steppingstone towards realization of commercial all-solid-state batteries.
Published DART impact provided real-time data on evolution of asteroid's debris


When asteroids suffer natural impacts in space, debris flies off from the point of impact. The tail of particles that form can help determine the physical characteristics of the asteroid. NASA's Double Asteroid Redirection Test mission in September 2022 gave a team of scientists a unique opportunity -- to observe the evolution of an asteroid's ejecta as it happened.
Published Extreme fast charging capability in lithium-ion batteries


Lithium-ion batteries dominate among energy storage devices and are the battery of choice for the electric vehicle industry. Improving battery performance is a constant impetus to current research in this field. Towards this end, a group of researchers has synthesized a lithium borate-type aqueous polyelectrolyte binder for graphite anodes. Their new binder helped improve Li-ion diffusion and lower impedance compared to conventional batteries.
Published Hansel and Gretel's breadcrumb trick inspires robotic exploration of caves on Mars and beyond


Future space missions likely will send robots to scout out underground habitats for astronauts. Engineers have now developed a system that would enable autonomous vehicles to explore caves, lava tubes and even oceans on other worlds on their own.
Published Hubble captures movie of DART asteroid impact debris


In 2022 NASA embarked on a bold experiment to see if they could change an asteroid's velocity by smacking it with a ballistic probe -- kind of like hitting it with a hammer. This experiment was to test a potential technique to someday deflect an asteroid on a collision course to Earth. Perhaps, for the first time in the history of the universe, an intelligent planetary species sought ways to avoid its own potential extinction by threats from outer space (something the dinosaurs, who were wiped out 65 million years ago by a rogue asteroid, never evolved to accomplish).
Published New NASA DART data prove viability of asteroid deflection as planetary defense strategy


Astronomers offer new insight into how deflection missions can protect the planet from future Earth-bound asteroids and comets.
Published Baby star near the black hole in the middle of our Milky Way: It exists after all


Scientists have detected the heaviest and youngest infant star ever discovered close to the black hole at the center of our Galaxy. They also identified the region where this 'impossible star' may have formed.
Published Liquid nitrogen spray could clean up stubborn moon dust


A liquid nitrogen spray can remove almost all of the simulated moon dust from a space suit, potentially solving what is a significant challenge for future moon-landing astronauts.
Published Corralling ions improves viability of next generation solar cells


Researchers have discovered that channeling ions into defined pathways in perovskite materials improves the stability and operational performance of perovskite solar cells. The finding paves the way for a new generation of lighter, more flexible, and more efficient solar cell technologies suitable for practical use.
Published New method creates material that could create the next generation of solar cells


Perovskites, a family of materials with unique electric properties, show promise for use in a variety fields, including next-generation solar cells. A team of scientists has now created a new process to fabricate large perovskite devices that is more cost- and time-effective than previously possible and that they said may accelerate future materials discovery.
Published A mysterious object is being dragged into the supermassive black hole at the Milky Way's center


An object near the supermassive black hole at the center of the Milky Way galaxy has drawn the interest of scientists because it has evolved dramatically in a relatively short time. A new study suggests that the object, called X7, could be a cloud of dust and gas that was created when two stars collided. The researchers believe it will eventually be drawn toward the black hole and will disintegrate.
Published New discovery sheds light on very early supermassive black holes


Astronomers have discovered a rapidly growing black hole in one of the most extreme galaxies known in the very early Universe. The discovery of the galaxy and the black hole at its center provides new clues on the formation of the very first supermassive black holes.
Published A new chip for decoding data transmissions demonstrates record-breaking energy efficiency


A new chip called ORBGRAND can decode any code applied to data transmitted over the internet with maximum accuracy and between 10 and 100 times more energy efficiency than other methods.
Published Heterostructures support predictions of counterpropagating charged edge modes at the v=2/3 fractional quantum Hall state



Researchers have tested models of edge conduction with a device built on top of the semiconductor heterostructure which consists of gold gates that come close together. Voltage is applied on the gates to direct the edge states through the middle of the point contact, where they are close enough that quantum tunneling can occur between the edge states on opposite sides the sample. Changes in the electrical current flowing through the device are used to test the theorists' predictions.
Published How one of Saturn's moons ejects particles from oceans beneath its surface


Enceladus, the sixth largest of Saturn's moons, is known for spraying out tiny icy silica particles -- so many of them that the particles are a key component of the second outermost ring around Saturn. Scientists have not known how that happens or how long the process takes. A study now shows that tidal heating in Enceladus' core creates currents that transport the silica, which is likely released by deep-sea hydrothermal vents, over the course of just a few months.
Published Why do Earth's hemispheres look equally bright when viewed from space?


When seen from space, Earth's hemispheres -- northern and southern -- appear equally bright. For years, the brightness symmetry between hemispheres remained a mystery. In a new study, researchers reveal a strong correlation between storm intensity, cloudiness and the solar energy reflection rate in each hemisphere. They offer a solution to the mystery, alongside an assessment of how climate change might alter the reflection rate in the future.