Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Geoscience: Landslides
Published Electrocatalysis under the atomic force microscope


A further development in atomic force microscopy now makes it possible to simultaneously image the height profile of nanometer-fine structures as well as the electric current and the frictional force at solid-liquid interfaces. A team has succeeded in analyzing electrocatalytically active materials and gaining insights that will help optimize catalysts. The method is also potentially suitable for studying processes on battery electrodes, in photocatalysis or on active biomaterials.
Published New kind of transistor could shrink communications devices on smartphones


One month after announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a team has now demonstrated a reconfigurable transistor using that material. Their work paves the way for single amplifiers that can do the work of multiple conventional amplifiers, among other possibilities.
Published New 'camera' with shutter speed of 1 trillionth of a second sees through dynamic disorder of atoms


Researchers have developed a new 'camera' that sees the local disorder in materials. Its key feature is a variable shutter speed: because the disordered atomic clusters are moving, when the team used a slow shutter, the dynamic disorder blurred out, but when they used a fast shutter, they could see it. The method uses neutrons to measure atomic positions with a shutter speed of around one picosecond, a trillion times faster than normal camera shutters.
Published Electric vehicle batteries could get big boost with new polymer coating


Scientists have developed a polymer coating that could enable longer lasting, more powerful lithium-ion batteries for electric vehicles. The advance opens up a new approach to developing EV batteries that are more affordable and easy to manufacture.
Published Mississippi River Delta study reveals which human actions contribute to land loss


Scientists reveal new information about the role humans have played in large-scale land loss in the Mississippi River Delta -- crucial information in determining solutions to the crisis.
Published Controlling electric double layer dynamics for next generation all-solid-state batteries


Development of all-solid-state batteries is crucial to achieve carbon neutrality. However, their high surface resistance causes these batteries to have low output, limiting their applications. To this end, researchers have employed a novel technique to investigate and modulate electric double layer dynamics at the solid/solid electrolyte interface. The researchers demonstrate unprecedented control of response speed by over two orders of magnitude, a major steppingstone towards realization of commercial all-solid-state batteries.
Published Extreme fast charging capability in lithium-ion batteries


Lithium-ion batteries dominate among energy storage devices and are the battery of choice for the electric vehicle industry. Improving battery performance is a constant impetus to current research in this field. Towards this end, a group of researchers has synthesized a lithium borate-type aqueous polyelectrolyte binder for graphite anodes. Their new binder helped improve Li-ion diffusion and lower impedance compared to conventional batteries.
Published Reassessment of Storegga event: Second major landslide recognized


Submarine landslides have a large tsunami potential and occurred on the central Norwegian shelf more frequently in the past than previously thought. Scientists investigate the Nyegga landslide off the coast of Norway. The submarine landslide occurred in the same area as the well-known Storegga event 8,150 years ago. The new findings suggest that approximately one-third of the seafloor material missing -- previously attributed to the Storegga event -- was removed by the Nyegga event 20,000 years ago. This raises questions about the frequency of large submarine landslides and their associated tsunami hazard.
Published Corralling ions improves viability of next generation solar cells


Researchers have discovered that channeling ions into defined pathways in perovskite materials improves the stability and operational performance of perovskite solar cells. The finding paves the way for a new generation of lighter, more flexible, and more efficient solar cell technologies suitable for practical use.
Published New method creates material that could create the next generation of solar cells


Perovskites, a family of materials with unique electric properties, show promise for use in a variety fields, including next-generation solar cells. A team of scientists has now created a new process to fabricate large perovskite devices that is more cost- and time-effective than previously possible and that they said may accelerate future materials discovery.
Published A new chip for decoding data transmissions demonstrates record-breaking energy efficiency


A new chip called ORBGRAND can decode any code applied to data transmitted over the internet with maximum accuracy and between 10 and 100 times more energy efficiency than other methods.
Published Heterostructures support predictions of counterpropagating charged edge modes at the v=2/3 fractional quantum Hall state



Researchers have tested models of edge conduction with a device built on top of the semiconductor heterostructure which consists of gold gates that come close together. Voltage is applied on the gates to direct the edge states through the middle of the point contact, where they are close enough that quantum tunneling can occur between the edge states on opposite sides the sample. Changes in the electrical current flowing through the device are used to test the theorists' predictions.
Published New design for lithium-air battery could offer much longer driving range compared with the lithium-ion battery


Scientists have built and tested for a thousand cycles a lithium-air battery design that could one day be powering cars, domestic airplanes, long-haul trucks and more. Its energy storage capacity greatly surpasses that possible with lithium-ion batteries.
Published Ramping up domestic graphite production could aid the green energy transition


Given the growing importance of graphite in energy storage technologies, a team of esearchers has conducted a study exploring ways to reduce reliance on imports of the in high-demand mineral, which powers everything from electric vehicles (EVs) to cell phones.
Published First transient electronic bandage speeds healing by 30%


Researchers have developed a small, flexible, stretchable bandage that accelerates healing by delivering electrotherapy directly to the wound site. The bandage also actively monitors the healing process and then harmlessly dissolves -- electrodes and all -- into the body after it is no longer needed.
Published New technology turns smartphones into RFID readers, saving costs and reducing waste


Imagine you can open your fridge, open an app on your phone and immediately know which items are expiring within a few days. This is one of the applications that a new technology would enable.
Published Study offers details on using electric fields to tune thermal properties of ferroelectric materials


New research sheds light on how electric fields can be used to alter the thermal properties of ferroelectric materials, allowing engineers to manipulate the flow of heat through the materials. Ferroelectric materials are used in a wide variety of applications, from ultrasound devices to memory storage technologies.
Published Nanoparticles self-assemble to harvest solar energy


Researchers design a solar harvester with enhanced energy conversion capabilities. The device employs a quasiperiodic nanoscale pattern, meaning most of it is an alternating and consistent pattern, while the remaining portion contains random defects that do not affect its performance. The fabrication process makes use of self-assembling nanoparticles, which form an organized material structure based on their interactions with nearby particles without any external instructions. Thermal energy harvested by the device can be transformed to electricity using thermoelectric materials.
Published Scientists engineer a 'self-charging' electrostatic face mask for prolonged air filtration, reducing the environmental burden


Researchers have engineered an electrostatic face mask that can 'self-charge' through the user's breathing and continuously replenish its electrostatic charge as the user wears and breathes through the mask. This significantly increase the filtering performance in prolonged use of the mask for up to 60 hours, compared to four hours for a conventional surgical mask. This also benefits the environment.
Published New ultrafast water disinfection method is more environmentally friendly


Researchers have found a way to use small shocks of electricity to disinfect water, reducing energy consumption, cost, and environmental impact. The technology could be integrated into the electric grid or even powered by batteries.