Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Researchers create new chemical compound to solve 120-year-old problem      (via sciencedaily.com)     Original source 

Chemists have created a highly reactive chemical compound that has eluded scientists for more than 120 years. The discovery could lead to new drug treatments, safer agricultural products, and better electronics.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Scientists solve chemical mystery at the interface of biology and technology      (via sciencedaily.com)     Original source 

Organic electrochemical transistors (OECTs) allow current to flow in devices like implantable biosensors. But scientists long knew about a quirk of OECTs that no one could explain: When an OECT is switched on, there is a lag before current reaches the desired operational level. When switched off, there is no lag. Current drops immediately. Researchers report that they have discovered the reason for this activation lag, and in the process are paving the way to custom-tailored OECTs for a growing list of applications in biosensing, brain-inspired computation and beyond.

Chemistry: Biochemistry Chemistry: General Energy: Fossil Fuels Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Methane emissions from landfill could be turned into sustainable jet fuel in plasma chemistry leap      (via sciencedaily.com)     Original source 

Researchers have developed a chemical process using plasma that could create sustainable jet fuel from methane gas emitted from landfills, potentially creating a low-carbon aviation industry.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

When does a conductor not conduct?      (via sciencedaily.com)     Original source 

A new study uncovers a switchable, atomically-thin metal-organic material that could be used in future low-energy electronic technologies. The study shows that electron interactions in this material create an unusual electrically-insulating phase in which electrons are 'frozen'. By reducing the population of electrons, the authors are able to unfreeze the remaining electrons, allowing for controlled transitions between insulating and electrically-conductive phases: the key to the on-off binary operations of classical computing.

Chemistry: Inorganic Chemistry Engineering: Robotics Research Offbeat: General Offbeat: Plants and Animals
Published

Scientists develop strong yet reusable adhesive from smart materials      (via sciencedaily.com)     Original source 

Scientists have developed a smart, reusable adhesive more than ten times stronger than a gecko's feet adhesion, pointing the way for development of reusable superglue and grippers capable of holding heavy weights across rough and smooth surfaces. The research team found a way to maximize the adhesion of the smart adhesives by using shape-memory polymers, which can stick and detach easily when needed simply by heating them. This smart adhesive can support extremely heavy weights, opening new possibilities for robotic grippers that allow humans to scale walls effortlessly, or climbing robots that can cling onto ceilings for survey or repair applications.

Chemistry: Inorganic Chemistry Energy: Alternative Fuels Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Physicists show that light can generate electricity even in translucent materials      (via sciencedaily.com)     Original source 

Some materials are transparent to light of a certain frequency. When such light is shone on them, electrical currents can still be generated, contrary to previous assumptions. Scientists have managed to prove this.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: Optics
Published

Imaging technique shows new details of peptide structures      (via sciencedaily.com)     Original source 

Researchers outline how they used a chemical probe to light up interlocking peptides. Their technique will help scientists differentiate synthetic peptides from toxic types found in Alzheimer's disease.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

More efficient molecular motor widens potential applications      (via sciencedaily.com)     Original source 

Light-driven molecular motors were first developed nearly 25 years ago. However, making these motors do actual work proved to be a challenge. In a new paper, scientists describe improvements that bring real-life applications closer.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Engineering: Nanotechnology
Published

Diamond dust shines bright in Magnetic Resonance Imaging      (via sciencedaily.com)     Original source 

An unexpected discovery surprised a scientist: nanometer-sized diamond particles, which were intended for a completely different purpose, shone brightly in a magnetic resonance imaging experiment -- much brighter than the actual contrast agent, the heavy metal gadolinium. Could diamond dust -- in addition to its use in drug delivery to treat tumor cells -- one day become a novel contrast agent used for MRI?

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology
Published

'Like a nanoscopic Moon lander': Scientists unlock secret of how pyramidal molecules move across surfaces      (via sciencedaily.com)     Original source 

Scientists have watched a molecule move across a graphite surface in unprecedented detail. It turns out this particular molecule moves like a Moon lander -- and the insights hold potential for future nanotechnologies.

Chemistry: Inorganic Chemistry
Published

Freeze casting: A guide to creating hierarchically structured materials      (via sciencedaily.com)     Original source 

Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Geoscience: Environmental Issues Geoscience: Geochemistry
Published

A chemical mystery solved -- the reaction explaining large carbon sinks      (via sciencedaily.com)     Original source 

A mystery that has puzzled the scientific community for over 50 years has finally been solved. A team has discovered that a certain type of chemical reaction can explain why organic matter found in rivers and lakes is so resistant to degradation.

Chemistry: Inorganic Chemistry
Published

Making diamonds at ambient pressure      (via sciencedaily.com)     Original source 

Researchers have grown diamonds under conditions of 1 atmosphere pressure and at 1025 degrees Celsius using a liquid metal alloy composed of gallium, iron, nickel, and silicon, thus breaking the existing paradigm. The discovery of this new growth method opens many possibilities for further basic science studies and for scaling up the growth of diamonds in new ways.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Lead-vacancy centers in diamond as building blocks for large-scale quantum networks      (via sciencedaily.com)     Original source 

A lead-vacancy (PbV) center in diamond has been developed as a quantum emitter for large-scale quantum networks by researchers. This innovative color center exhibits a sharp zero-phonon-line and emits photons with specific frequencies. The PbV color center stands out among other diamond color centers due to its ability to maintain optical properties at relatively high temperatures of 16 K. This makes it well-suited for transferring quantum information in large-scale quantum networks.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology
Published

Magnetic with a pinch of hydrogen      (via sciencedaily.com)     Original source 

Magnetic two-dimensional materials consisting of one or a few atomic layers have only recently become known and promise interesting applications, for example for the electronics of the future. So far, however, it has not been possible to control the magnetic states of these materials well enough. A research team is now presenting an innovative idea that could overcome this shortcoming -- by allowing the 2D layer to react with hydrogen.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Engineering: Graphene
Published

More economical and sustainable rechargeable batteries      (via sciencedaily.com)     Original source 

Lithium salts make batteries powerful but expensive. An ultralow-concentration electrolyte based on the lithium salt LiDFOB may be a more economical and more sustainable alternative. Cells using these electrolytes and conventional electrodes have been demonstrated to have high performance. In addition, the electrolyte could facilitate both production and recycling of the batteries.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

New copper-catalyzed C-H activation strategy      (via sciencedaily.com)     Original source 

Inspired by what human liver enzymes can do, chemists have developed a new set of copper-catalyzed organic synthesis reactions for building and modifying pharmaceuticals and other molecules. The new reactions are expected to be widely used in drug discovery and optimization, as well as in other chemistry-based industries.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene
Published

Development of organic semiconductors featuring ultrafast electrons      (via sciencedaily.com)     Original source 

Collaboration has led to the successful observation of these ultrafast electrons within conducting two-dimensional polymers.