Showing 20 articles starting at article 121

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Thermodynamics, Energy: Fossil Fuels

Return to the site home page

Chemistry: Thermodynamics Environmental: General
Published

Computational method discovers hundreds of new ceramics for extreme environments      (via sciencedaily.com)     Original source 

If you have a deep-seated, nagging worry over dropping your phone in molten lava, you're in luck. Materials scientists have developed a method for rapidly discovering a new class of materials with heat and electronic tolerances so rugged that they that could enable devices to function at several thousands of degrees Fahrenheit.

Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Batteries Energy: Fossil Fuels Energy: Technology Environmental: General
Published

New material allows for better hydrogen-based batteries and fuel cells      (via sciencedaily.com)     Original source 

Researchers have developed a solid electrolyte for transporting hydride ions at room temperature. This breakthrough means that the full advantages of hydrogen-based solid-state batteries and fuel cells can be had without the need for constant hydration. This will reduce their complexity and cost, which is essential for advancing towards a practical hydrogen-based energy economy.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Are diamonds GaN's best friend? Revolutionizing transistor technology      (via sciencedaily.com)     Original source 

A research team has fabricated a gallium nitride (GaN) transistor using diamond, which of all natural materials has the highest thermal conductivity on earth, as a substrate, and they succeeded in increasing heat dissipation by more than two times compared with conventional transistors. The transistor is expected to be useful not only in the fields of 5G communication base stations, weather radar, and satellite communications, but also in microwave heating and plasma processing.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Researchers find way to weld metal foam without melting its bubbles      (via sciencedaily.com)     Original source 

Researchers have identified a welding technique that can be used to join composite metal foam (CMF) components together without impairing the properties that make CMF desirable. CMFs hold promise for a wide array of applications because the pockets of air they contain make them light, strong and effective at insulating against high temperatures.

Chemistry: Thermodynamics Energy: Technology Environmental: General
Published

This adaptive roof tile can cut both heating and cooling costs      (via sciencedaily.com)     Original source 

In a new study, researchers present an adaptive tile, which when deployed in arrays on roofs, can lower heating bills in winter and cooling bills in summer, without the need for electronics.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Physics: General
Published

Ultra-hard material to rival diamond discovered      (via sciencedaily.com)     Original source 

Scientists have solved a decades-long puzzle and unveiled a near unbreakable substance that could rival diamond, as the hardest material on earth, a study says. Researchers found that when carbon and nitrogen precursors were subjected to extreme heat and pressure, the resulting materials -- known as carbon nitrides -- were tougher than cubic boron nitride, the second hardest material after diamond.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Scientists 3D print self-heating microfluidic devices      (via sciencedaily.com)     Original source 

A fabrication process can produce self-heating microfluidic devices in one step using a multimaterial 3D printer. These devices, which can be made rapidly and cheaply in large numbers, could help clinicians in remote parts of the world detect diseases without expensive lab equipment.

Chemistry: Thermodynamics Energy: Technology
Published

Permselectivity reveals a cool side of nanopores      (via sciencedaily.com)     Original source 

Researchers investigated the thermal energy changes across nanopores that allow the selective flow of ions. Switching off the flow of ions in one direction led to a cooling effect. The findings have applications in nanofluidic devices and provide insight into the factors governing ion channels in cells. The nanopore material could be tailored to tune the cooling and arrays could be produced to scale up the effect.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Engineering: Nanotechnology Physics: General Physics: Optics
Published

Polaritons open up a new lane on the semiconductor highway      (via sciencedaily.com)     Original source 

On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called 'polaritons.'

Chemistry: Thermodynamics
Published

Boiled bubbles jump to carry more heat      (via sciencedaily.com)     Original source 

The topic of water and the way it can move producing water droplets that leap -- propelled by surface tension -- and frost that jumps -- by way of electrostatics -- is a central focus of a group of scientists. Having incorporated the two phases of liquid and solid in the first two volumes of their research, their third volume investigates a third phase, with boiling water.

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Batteries Environmental: Water
Published

Promising salt for heat storage      (via sciencedaily.com)     Original source 

Salt batteries can store summer heat to be used in winter, but which salt works best for the purpose?

Chemistry: Thermodynamics
Published

Toward sustainable energy applications with breakthrough in proton conductors      (via sciencedaily.com)     Original source 

Donor doping into a mother material with disordered intrinsic oxygen vacancies, instead of the widely used strategy of acceptor doping into a material without oxygen vacancies, can greatly enhance the conductivity and stability of perovskite-type proton conductors at intermediate and low temperatures of 250--400 °C.

Chemistry: Biochemistry Energy: Alternative Fuels Energy: Fossil Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Hydrogen fuel can be a competitive alternative to gasoline and diesel today      (via sciencedaily.com)     Original source 

Energy researchers posit hydrogen fuel can potentially be a cost-competitive and environmentally friendly alternative to gasoline and diesel, and that supplying hydrogen for transportation in the greater Houston area can be profitable today.

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues
Published

No one-size-fits-all solution for the net-zero grid      (via sciencedaily.com)     Original source 

As power generation from sources like solar and wind increases, along with the introduction of devices such as heat pumps and batteries, a new optimization tool will help the UK plan for a greener electricity network.   The researchers developed an algorithm to model how these smaller networks distributed electricity -- factoring in how local grids could become unbalanced by adding too many heat pumps in a single area or generating more electricity than the grid could accept.  

Chemistry: Thermodynamics Environmental: General Environmental: Water
Published

New tool models viability of closed-loop geothermal systems      (via sciencedaily.com)     Original source 

Researchers have used computer models of closed-loop geothermal systems to determine if they would be economically viable sources of renewable energy. They found that the cost of drilling would need to decrease significantly to hit cost targets.

Chemistry: General Chemistry: Thermodynamics Energy: Technology Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General
Published

'Cooling glass' blasts building heat into space      (via sciencedaily.com)     Original source 

Researchers aiming to combat rising global temperatures have developed a new 'cooling glass' that can turn down the heat indoors without electricity by drawing on the cold depths of space. The new technology, a microporous glass coating, can lower the temperature of the material beneath it by 3.5 degrees Celsius at noon, and has the potential to reduce a mid-rise apartment building's yearly carbon emissions by 10 percent.

Chemistry: Biochemistry Chemistry: General Energy: Alternative Fuels Energy: Fossil Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Ammonia fuel offers great benefits but demands careful action      (via sciencedaily.com)     Original source 

Researchers have identified the potential environmental risks of using ammonia as a zero-carbon fuel in order to develop an engineering roadmap to a sustainable ammonia economy.

Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

Solar-powered device produces clean water and clean fuel at the same time      (via sciencedaily.com)     Original source 

A floating, solar-powered device that can turn contaminated water or seawater into clean hydrogen fuel and purified water, anywhere in the world, has been developed by researchers.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Geoscience: Severe Weather
Published

New cooling ceramic can enhance energy efficiency for the construction sector and help combat global warming      (via sciencedaily.com)     Original source 

Researchers have made a significant breakthrough in developing a passive radiative cooling (PRC) material. The material, known as cooling ceramic, has achieved high-performance optical properties for energy-free and refrigerant-free cooling generation. Its cost-effectiveness, durability and versatility make it highly suitable for commercialization in numerous applications, particularly in building construction. 

Chemistry: Biochemistry Chemistry: Thermodynamics Engineering: Nanotechnology
Published

Understanding the dynamic behavior of rubber materials      (via sciencedaily.com)     Original source 

Rubber-like materials can exhibit both spring-like and flow-like behaviors simultaneously, which contributes to their exceptional damping abilities. To understand the dynamic viscoelasticity of these materials, researchers have recently developed a novel system that can conduct dynamic mechanical analysis and dynamic micro X-ray computed tomography simultaneously. This technology can enhance our understanding of the microstructure of viscoelastic materials and pave the way for the development of better materials.