Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Energy: Fossil Fuels
Published Sensors that operate at high temperatures and in extreme environments



Researchers have developed a new reliable and durable sensor that can work in temperatures as high as 900 degrees Celsius or 1,650 degrees Fahrenheit and can be used in multiple industries.
Published Driving on sunshine: Clean, usable liquid fuels made from solar power



Researchers have developed a solar-powered technology that converts carbon dioxide and water into liquid fuels that can be added directly to a car's engine as drop-in fuel.
Published Watch these cells rapidly create protrusions for exploration and movement



In order to move, cells must be able to rapidly change shape. A team of researchers show that cells achieve this by storing extra 'skin' in folds and bumps on their surface. This cell surface excess can be rapidly deployed to cover temporary protrusions and then folded away for next time.
Published 'Improved' cookstoves emit more ultrafine particles than conventional stoves



Improved cookstoves, which are widely used for cooking in developing countries, produce twice as many harmful ultrafine air pollution particles (PM0.1) as conventional stoves, according to a new study.
Published Unlocking the power of photosynthesis for clean energy production



Researchers are embarking on a groundbreaking project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst. By leveraging the unique properties of microorganisms and nanomaterials, the system has the potential to replace current approaches that derive hydrogen from fossil fuels, revolutionizing the way hydrogen fuel is produced and unlocking a powerful source of renewable energy.
Published CO2 recycling: What is the role of the electrolyte?



The greenhouse gas carbon dioxide can be converted into useful hydrocarbons by electrolysis. The design of the electrolysis cell is crucial in this process. The so-called zero-gap cell is particularly suitable for industrial processes. But there are still problems: The cathodes clog up quickly.
Published New programmable smart fabric responds to temperature and electricity



A new smart material is activated by both heat and electricity, making it the first ever to respond to two different stimuli.
Published Even as temperatures rise, this hydrogel material keeps absorbing moisture



Engineers find the hydrogel polyethylene glycol (PEG) doubles its water absorption as temperatures climb from 25 to 50 C, and could be useful for passive cooling or water harvesting in warm climates.
Published Tiny biobattery with 100-year shelf life runs on bacteria



A tiny biobattery that could still work after 100 years has been developed.
Published Chemists propose ultrathin material for doubling solar cell efficiency



Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.
Published A solar hydrogen system that co-generates heat and oxygen



Researchers have built a pilot-scale solar reactor that produces usable heat and oxygen, in addition to generating hydrogen with unprecedented efficiency for its size.
Published Microwaves advance solar-cell production and recycling



New technology advances solar-cell production and recycling. New microwave technology will improve the manufacture of solar cells and make them easier to recycle.
Published Processing data at the speed of light



Scientists have developed an extremely small and fast nano-excitonic transistor.
Published Gentle method allows for eco-friendly recycling of solar cells



By using a new method, precious metals can be efficiently recovered from thin-film solar cells. The method is also more environmentally friendly than previous methods of recycling and paves the way for more flexible and highly efficient solar cells.
Published Chemists redesign biological PHAs, 'dream' biodegradable plastics



They've been called 'dream' plastics: polyhydroxyalkanoates, or PHAs. Already the basis of a fledgling industry, they're a class of polymers naturally created by living microorganisms, or synthetically produced from biorenewable feedstocks. They're biodegradable in the ambient environment, including oceans and soil.
Published Cities will need more resilient electricity networks to cope with extreme weather



Dense urban areas amplify the effects of higher temperatures, due to the phenomenon of heat islands in cities. This makes cities more vulnerable to extreme climate events. Large investments in the electricity network will be necessary to cool us down during heatwaves and keep us warm during cold snaps, according to a new study.
Published Shutting down nuclear power could increase air pollution



A new study shows that if U.S. nuclear power plants are retired, the burning of coal, oil, and natural gas to fill the energy gap could cause more than 5,000 premature deaths.
Published New textile unravels warmth-trapping secrets of polar bear fur



Engineers have invented a fabric that concludes the 80-year quest to make a synthetic textile modeled on polar bear fur. The results are already being developed into commercially available products.
Published Moving towards 3 degrees of warming -- the phasing out of coal is too slow



The use of coal power is not decreasing fast enough. The Paris Agreement's target of a maximum of 2 degrees of warming appear to be missed, and the world is moving towards a temperature increase of 2.5 -- 3 degrees. At the same time it is feasible to avoid higher warming.
Published Absolute zero in the quantum computer



Absolute zero cannot be reached -- unless you have an infinite amount of energy or an infinite amount of time. Scientists in Vienna (Austria) studying the connection between thermodynamics and quantum physics have now found out that there is a third option: Infinite complexity. It turns out that reaching absolute zero is in a way equivalent to perfectly erasing information in a quantum computer, for which an infinetly complex quantum computer would be required.