Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Energy: Batteries, Energy: Fossil Fuels
Published One-atom-thick ribbons could improve batteries, solar cells and sensors


Researchers created nanoribbons made of phosphorus and tiny amounts of arsenic, which they found were able to conduct electricity at temperatures above -140 degrees Celsius, while retaining the highly useful properties of the phosphorus-only ribbons.
Published Sustainable energy for aviation: What are our options?


Scientists and industry leaders worldwide are looking for answers on how to make aviation sustainable by 2050 and choosing a viable sustainable fuel is a major sticking point. Aerospace engineers took a full inventory of the options to make a data-driven assessment about how they stack up in comparison. He reviewed over 300 research projects from across different sectors, not just aerospace, to synthesize the ideas and draw conclusions to help direct the dialogue about sustainable aviation toward a permanent solution.
Published Researchers offer insights into solid-electrolyte interphases in next-gen aqueous potassium-ion batteries


Aqueous potassium-ion batteries are a promising alternative to lithium-ion batteries owing to their safety and low cost. However, not much is known about the properties of the solid-electrolyte interphases (SEI) that form between the electrode and the aqueous electrolyte. To address this knowledge gap, researchers from Japan have now conducted a study using advanced scanning electrochemical microscopy and operando electrochemical mass spectrometry. Their findings provide a deeper understanding of SEI in next-generation batteries.
Published Predictive model could improve hydrogen station availability


Consumer confidence in driving hydrogen-fueled vehicles could be improved by having station operators adopt a predictive model that helps them anticipate maintenance needs, according to researchers.
Published Pixel-by-pixel analysis yields insights into lithium-ion batteries


By mining X-ray images, researchers have made significant new discoveries about the reactivity of lithium iron phosphate, a material used in batteries for electric cars and in other rechargeable batteries.
Published Charging ahead: New electrolyte goes extra mile for faster EV charging


Researchers are taking fast charging for electric vehicles, or EVs, to new extremes.
Published New study reveals the power of railroads to buffer coal plants from a carbon emissions tax


A new study suggests that railroads are likely to cut transportation prices to prop up coal-fired plants if U.S. climate policies further disadvantage coal in favor of less carbon-intensive energy sources.
Published Scientists develop new method to recover high-purity silicon from expired solar panels for upcycling into lithium-ion batteries


Scientists have devised an efficient method of recovering high-purity silicon from expired solar panels to produce lithium-ion batteries that could help meet the increasing global demand to power electric vehicles.
Published New battery holds promise for green energy


A chemist envisions a future where every house is powered by renewable energy stored in batteries. He has created a new battery that could have profound implications for the large-scale energy storage needed by wind and solar farms.
Published Efficient and mild: Recycling of used lithium-ion batteries


Lithium-ion batteries (LIBs) provide our portable devices like tablets and mobiles -- and increasingly also vehicles -- with power. As the share of volatile renewable energy needing electricity storage increases, more and more LIBs are needed, lithium prices rise, resources dwindle, and the amount of depleted batteries that contain toxic substances increases. Researchers introduce a novel approach for the recovery of lithium from used LIBs.
Published Scientists develop an energy-efficient wireless power and information transfer system


Simultaneous wireless information and power transfer (SWIPT)-aided nonorthogonal multiple access (NOMA) system, used for communication in the Industrial Internet of Things (IIoTs), suffers from significant energy loss with transmission distance. Now, researchers have developed an energy-efficient framework by applying SWIPT-NOMA to a distributed antenna system. This technology is expected to pave the way for more efficient and optimized IoT environments.
Published Thin-film batteries rechargable in just one minute


Engineers aim to revolutionize rechargeable batteries: Their thin-film batteries are not only safer and longer-lasting than conventional lithium-ion batteries, they are also much more environmentally friendly to manufacture and can be charged in just one minute. For now, the battery is very small, but the founders have big plans for it.
Published Direct power generation from methylcyclohexane using solid oxide fuel cells



Methylcyclohexane is very promising as a hydrogen carrier that can safely and efficiently transport and store hydrogen. However, the dehydrogenation process using catalysts has issues due to its durability and large energy loss. Recently, researchers have succeeded in using solid oxide fuel cells to generate electricity directly from methylcyclohexane and recover toluene for reuse. This research is expected to not only reduce energy requirements but also explore new chemical synthesis by fuel cells.
Published Math enables blending hydrogen in natural gas pipelines


Mathematical modeling can show how to safely blend hydrogen with natural gas for transport in existing pipeline systems. A secure and reliable transition to hydrogen is one of the proposed solutions for the shift to a net-zero-carbon economy.
Published Scientists invent micrometers-thin battery charged by saline solution that could power smart contact lenses


Scientists have developed a flexible battery as thin as a human cornea, which stores electricity when it is immersed in saline solution, and which could one day power smart contact lenses.
Published New study finds ways to suppress lithium plating in automotive batteries for faster charging electric vehicles


A new study has found a way to prevent lithium plating in electric vehicle batteries, which could lead to faster charging times.
Published Towards better batteries and fuel cells with dispersibility estimation for carbon electrode slurries


Carbon slurries, which consist of a suspension of carbon particles in a solvent, are used to mass-produce battery electrodes. However, there are no adequate methods to evaluate whether the particles are uniformly dispersed in the slurry during the manufacturing process. In a recent study, researchers used an innovative approach, combining viscosity and electrochemical impedance measurements, to accurately assess the dispersibility of slurries, opening doors to enhanced electric vehicles and fuel cell batteries.
Published Steam condenser coating could save 460M tons of CO2 annually


If coal and natural gas power generation were 2% more efficient, then, every year, there could be 460 million fewer tons of carbon dioxide released and 2 trillion fewer gallons of water used. A recent innovation to the steam cycle used in fossil fuel power generation could achieve this.
Published New platform could boost development of carbon-capturing batteries


Efficient and cheap batteries that can also capture harmful emissions could be right around the corner, thanks to a new system that speeds up the development of catalysts for lithium-CO2 (Li-CO2) batteries.
Published New approach shows hydrogen can be combined with electricity to make pharmaceutical drugs


The world needs greener ways to make chemicals. In a new study, researchers demonstrate one potential path toward this goal by adapting hydrogen fuel cell technologies.