Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Energy: Batteries, Energy: Fossil Fuels
Published The price tag of phasing-out coal



Coal phase-out is necessary to solve climate change, but can have negative impacts on workers and local communities dependent on coal for their livelihoods. Researchers have studied government plans for coal phase-out around the world and discovered that more than half of such plans include monetary compensation to affected parties. This planned compensation globally amounts to USD 200 billion, but it excludes China and India, the two largest users of coal that currently do not have phase-out plans. The study shows that if China and India decide to phase out coal as fast as needed to reach the Paris climate targets and pay similar compensation, it would cost upwards of USD 2 trillion.
Published Disorder improves battery life



What determines the cycle life of batteries? And, more importantly, how can we extend it? An international research team has discovered that local disorder in the oxide cathode material increases the number of times Li-ion batteries can be charged and discharged.
Published Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes



Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements.
Published Methane emissions from landfill could be turned into sustainable jet fuel in plasma chemistry leap



Researchers have developed a chemical process using plasma that could create sustainable jet fuel from methane gas emitted from landfills, potentially creating a low-carbon aviation industry.
Published How electric vehicle drivers can escape range anxiety



Two of the biggest challenges faced by new and potential electric vehicle (EV) drivers are range anxiety and speed of charging, but these shouldn't have to be challenges at all. Researchers discovered that a change in refueling mindset, rather than improving the size or performance of the battery, could be the answer to these concerns.
Published This salt battery harvests osmotic energy where the river meets the sea



Estuaries -- where freshwater rivers meet the salty sea -- are great locations for birdwatching and kayaking. In these areas, waters containing different salt concentrations mix and may be sources of sustainable, 'blue' osmotic energy. Researchers report creating a semipermeable membrane that harvests osmotic energy from salt gradients and converts it to electricity. The new design had an output power density more than two times higher than commercial membranes in lab demonstrations.
Published Critical minerals recovery from electronic waste



A nontoxic separation process recovers critical minerals from electronic scrap waste.
Published More economical and sustainable rechargeable batteries



Lithium salts make batteries powerful but expensive. An ultralow-concentration electrolyte based on the lithium salt LiDFOB may be a more economical and more sustainable alternative. Cells using these electrolytes and conventional electrodes have been demonstrated to have high performance. In addition, the electrolyte could facilitate both production and recycling of the batteries.
Published The biggest barrier to a vibrant second-hand EV market? Price



As early adopters of electric vehicles (EVs) trade up for the latest models, the used EV market is beginning to mature in the United States. Yet many potential buyers, particularly low-income drivers, are skeptical of EV's conveniences and are put off by the price.
Published Coal train pollution increases health risks and disparities



The first health impact study of coal train pollution centers on the San Francisco Bay Area, with scientists finding communities near passing coal trains suffer worse health outcomes.
Published Mess is best: Disordered structure of battery-like devices improves performance



The energy density of supercapacitors -- battery-like devices that can charge in seconds or a few minutes -- can be improved by increasing the 'messiness' of their internal structure. Researchers used experimental and computer modelling techniques to study the porous carbon electrodes used in supercapacitors. They found that electrodes with a more disordered chemical structure stored far more energy than electrodes with a highly ordered structure.
Published Neutrons rule the roost for cage-free lithium ions



Scientists using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could boost power and safety for lithium batteries.
Published Researchers can help shipowners achieve ambitious climate targets



International shipping does not want to be a climate bad guy and is aiming to be emission-free by 2050. A new tool can help shipowners who are searching for green solutions.
Published Pyrite, also known as fool's gold, may contain valuable lithium, a key element for green energy



The technology revolution and development of new renewable energy resources is driving demand for lithium to new heights, but it is not a common mineral. Scientists say they have found lithium in an unexpected place; fool's gold, or pyrite, deposits.
Published Discovery brings all-solid-state sodium batteries closer to practical use



Researchers have developed a mass synthesis process for sodium-containing sulfides. Mass synthesis of electrolytes with high conductivity and formability is key to the practical use of all-solid-state sodium batteries, thought to be safer than lithium-ion batteries and less expensive, as sodium is far more plentiful than lithium.
Published Subterranean storage of hydrogen



Scientists are using computer simulations and laboratory experiments to see if depleted oil and natural gas reservoirs can be used for storing carbon-free hydrogen fuel. Hydrogen is an important clean fuel: It can be made by splitting water using solar or wind power, it can be used to generate electricity and power heavy industry, and it could be used to power fuel-cell-based vehicles. Additionally, hydrogen could be stored for months and used when energy needs outpace the supply delivered by renewable energy sources.
Published BESSY II: How pulsed charging enhances the service time of batteries



An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces aging effects, an international team demonstrated.
Published Drawing inspiration from plants: A metal-air paper battery for wearable devices



Drawing inspiration from the way plants breathe, a group of researchers has created a paper-based magnesium-air battery that can be used in GPS sensors or pulse oximeter sensors. Taking advantage of paper's recyclability and lightweight nature, the engineered battery holds promise for a more environmentally friendly source of energy.
Published Unleashing disordered rocksalt oxides as cathodes for rechargeable magnesium batteries



Researchers have made a groundbreaking advancement in battery technology, developing a novel cathode material for rechargeable magnesium batteries that enables efficient charging and discharging even at low temperatures.
Published Magnetic fields boost clean energy



Researchers show that using magnetic fields can boost electrocatalysis for sustainable fuel production by enhancing the movement of the reactants, which improves the efficiency of energy-related reactions.