Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Energy: Fossil Fuels, Energy: Technology
Published Liquid lithium on the walls of a fusion device helps the plasma within maintain a hot edge



Emerging research suggests it may be easier to use fusion as a power source if liquid lithium is applied to the internal walls of the device housing the plasma. Past experiments studied solid lithium coatings and found they could enhance a plasma. The researchers were pleased they could yield similar results with liquid lithium, as it's better suited for use in a large-scale tokamak.
Published Self-powered movable seawall for tsunami protection and emergency power generation



A movable seawall system, capable of generating sufficient electricity to raise gates and protect ports against tsunamis, has been proposed by researchers. The system has been found feasible in areas prone to Nankai Trough earthquake tsunamis. Additionally, it can generate surplus energy to supply emergency power to ports during power outages that commonly occur in natural disasters. This innovative system integrates disaster prevention with the use of renewable energy.
Published Offshore wind farms are vulnerable to cyberattacks



Researchers have presented a new study on cyberattack risks to offshore wind farms in Glasgow, United Kingdom. They looked specifically at wind farms that use voltage-source-converter high-voltage direct-current (VSC-HVDC) connections, which are rapidly becoming the most cost-effective solution to harvest offshore wind energy around the world. They found that their complex, hybrid-communication architecture presents multiple access points for cyberattacks.
Published Fast-charging lithium battery seeks to eliminate 'range anxiety'



Engineers have created a new lithium battery that can charge in under five minutes -- faster than any such battery on the market -- while maintaining stable performance over extended cycles of charging and discharging.
Published Water, water everywhere and now we may have drops to drink



Researchers have achieved a major breakthrough in Redox Flow Desalination (RFD), an emerging electrochemical technique that can turn seawater into potable drinking water and also store affordable renewable energy.
Published Major climate benefits with electric aircraft



Researchers have performed the world's first life cycle assessment (LCA) of an existing, two-seater, all-electric aircraft, with a direct comparison to an equivalent fossil fuel-powered one. According to the study, after just one quarter of the expected lifespan of the electric aircraft, the climate impact is lower than that of the fossil fuel-based aircraft, provided that green electricity is used. The downside, however, is increased mineral resource scarcity.
Published Manipulated hafnia paves the way for next-gen memory devices



A new study outlines progress toward making bulk ferroelectric and antiferroelectric hafnia available for use in a variety of applications, including high-performance computing.
Published Self-powered sensor automatically harvests magnetic energy



Researchers have designed a self-powering, battery-free, energy-harvesting sensor. Using the framework they developed, they produced a temperature sensor that can harvest and store the energy from the magnetic field that exists in the open air around a wire.
Published Mini-robots modeled on insects may be smallest, lightest, fastest ever developed



Two insect-like robots, a mini-bug and a water strider may be the smallest, lightest and fastest fully functional micro-robots ever known to be created. Such miniature robots could someday be used for work in areas such as artificial pollination, search and rescue, environmental monitoring, micro-fabrication or robotic-assisted surgery. Reporting on their work in the proceedings of the IEEE Robotics and Automation Society's International Conference on Intelligent Robots and Systems, the mini-bug weighs in at eight milligrams while the water strider weighs 55 milligrams. Both can move at about six millimeters a second.
Published Machine learning method speeds up discovery of green energy materials



Researchers have developed a framework that uses machine learning to accelerate the search for new proton-conducting materials, that could potentially improve the efficiency of hydrogen fuel cells.
Published Next-generation batteries could go organic, cobalt-free for long-lasting power



In the switch to 'greener' energy sources, the demand for rechargeable lithium-ion batteries is surging. However, their cathodes typically contain cobalt -- a metal whose extraction has high environmental and societal costs. Now, researchers in report evaluating an earth-abundant, carbon-based cathode material that could replace cobalt and other scarce and toxic metals without sacrificing lithium-ion battery performance.
Published Cobalt-free batteries could power cars of the future



A new battery material could offer a more sustainable way to power electric cars. The lithium-ion battery includes a cathode based on organic materials, instead of cobalt or nickel.
Published A non-proliferation solution: Using antineutrinos to surveil nuclear reactors



Antineutrinos generated in nuclear fission can be measured to remotely monitor the operation of nuclear reactors and verify that they are not being used to produce nuclear weapons, report scientists. Thanks to a newly developed method, it is now possible to estimate a reactor's operation status, fuel burnup, and fuel composition based entirely on its antineutrino emissions. This technique could contribute massively to nuclear non-proliferation efforts and, in turn, safer nuclear energy.
Published Artificial 'power plants' harness energy from wind and rain



Fake plants are moving into the 21st century! Researchers developed literal 'power plants' -- tiny, leaf-shaped generators that create electricity from a blowing breeze or falling raindrops. The team tested the energy harvesters by incorporating them into artificial plants.
Published Study reveals a reaction at the heart of many renewable energy technologies



Chemists have mapped how proton-coupled electron transfers happen at the surface of an electrode. Their results could help researchers design more efficient fuel cells, batteries, or other energy technologies.
Published Advancement in thermoelectricity could light up the Internet of Things



Researchers have improved the efficiency of heat-to-electricity conversion in gallium arsenide semiconductor microstructures. By judicious spatial alignment of electrons within a two-dimensional electron gas system with multiple subbands, one can substantially enhance the power factor compared with previous iterations of analogous systems. This work is an important advance in modern thermoelectric technology and will benefit the global integration of the Internet of Things.
Published How tidal range electricity generation can protect coastal areas from flooding



Tidal range schemes can protect estuaries and coastal areas from the effects of sea level rise, according to researchers who say that tidal range schemes are vital to protect habitats, housing and businesses from a rising sea level estimated to be over one metre within 80 years. High tides can be limited to existing levels simply by closing sluices and turbines and existing low tide levels can be maintained by pumping. Development of estuarine barrages has been hampered by misconceptions about their operation and fears of disturbance of the ecologically sensitive intertidal areas.
Published Using idle trucks to power the grid with clean energy



Researchers are tapping into idled electric vehicles to act as mobile generators and help power overworked and aging electricity grids. After analyzing energy demand on Alberta's power grid during rush hour, the research proposes an innovative way to replenish electrical grids with power generated from fuel cells in trucks.
Published Scientists use heat to create transformations between skyrmions and antiskyrmions



In an experiment that could help the development of new spintronics devices with low energy consumption, researchers have used heat and magnetic fields to create transformations between spin textures -- magnetic vortices and antivortices known as skyrmions and antiskyrmions -- in a single crystal thin plate device. Importantly, they achieved this at room temperature.
Published Highly durable, nonnoble metal electrodes for hydrogen production from seawater



The water electrolysis method, a promising avenue for hydrogen production, relies on substantial freshwater consumption, thereby limiting the regions available with water resources required for water electrolysis . Researchers have developed highly durable electrodes without precious metals to enable direct hydrogen production from seawater.