Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Energy: Fossil Fuels, Energy: Technology
Published 'Y-ball' compound yields quantum secrets


Scientists investigating a compound called 'Y-ball' -- which belongs to a mysterious class of 'strange metals' viewed as centrally important to next-generation quantum materials -- have found new ways to probe and understand its behavior.
Published Public acceptance of fossil fuel subsidy removal could be improved in developing countries


People might be more positive to the removal of fuel subsidies if told where the money would be spent instead. This has been shown in a study which investigated attitudes towards removing fossil fuel subsidies in five developing countries.
Published High-energy-density, long life-cycle rechargeable lithium metal batteries


Research shows promise for developing high-energy-density rechargeable lithium-metal batteries and addressing the electrochemical oxidation instability of ether-based electrolytes.
Published 'Green' hydrogen: How photoelectrochemical water splitting may become competitive


Sunlight can be used to produce green hydrogen directly from water in photoelectrochemical (PEC) cells. So far, most systems based on this 'direct approach' have not been energetically competitive. However, the balance changes as soon as some of the hydrogen in such PEC cells is used in-situ for a catalytic hydrogenation reaction, resulting in the co-production of chemicals used in the chemical and pharmaceutical industries. The energy payback time of photoelectrochemical 'green' hydrogen production can be reduced dramatically, the study shows.
Published Researchers create breakthrough spintronics manufacturing process that could revolutionize the electronics industry


Researchers have developed a breakthrough process for making spintronic devices that has the potential to create semiconductors chips with unmatched energy efficiency and storage for use in computers, smartphones, and many other electronics.
Published Rsearchers examine combined effects of two combustion technologies on the emission of coal-fired boilers


There is currently a large dependence on coal for power generation. As coal-fired plants cause environmental and health hazards, technologies such as swirl flow and air staging have been proposed to mitigate the pollutants in their emissions. However, it is unclear how effective these technologies are in reducing the environmental costs of these plants. Now, researchers have provided insights on this front in a new study, delineating their efficacies with experiments and simulations.
Published Minimizing electric vehicles' impact on the grid


Some projections show that widespread adoption of electric vehicles might require costly new power plants to meet peak loads in the evening. A new study shows that placing EV charging stations strategic ways and setting up systems to initiate charging at delayed times could lessen or eliminate the need for new power plants.
Published Propeller advance paves way for quiet, efficient electric aviation


Electrification is seen as having an important role to play in the fossil-free aviation of tomorrow. But electric aviation is battling a trade-off dilemma: the more energy-efficient an electric aircraft is, the noisier it gets. Now, researchers have developed a propeller design optimization method that paves the way for quiet, efficient electric aviation.
Published Game-changing high-performance semiconductor material could help slash heat emissions


Researchers have engineered a material with the potential to dramatically cut the amount of heat power plants release into the atmosphere.
Published Researchers develop soft robot that shifts from land to sea with ease


Most animals can quickly transition from walking to jumping to crawling to swimming if needed without reconfiguring or making major adjustments. Most robots cannot. But researchers have now created soft robots that can seamlessly shift from walking to swimming, for example, or crawling to rolling using a bistable actuator made of 3D-printed soft rubber containing shape-memory alloy springs that react to electrical currents by contracting, which causes the actuator to bend. The team used this bistable motion to change the actuator or robot's shape. Once the robot changes shape, it is stable until another electrical charge morphs it back to its previous configuration.
Published Switching to hydrogen fuel could prolong the methane problem


Hydrogen is often heralded as the clean fuel of the future, but new research suggests that leaky hydrogen infrastructure could end up increasing atmospheric methane levels, which would cause decades-long climate consequences.
Published Are piezoelectrics good for generating electricity? Perhaps, but we must decide how to evaluate them


A 'best practice' protocol for researchers developing piezoelectric materials has been developed by scientists. The protocol was developed by an international team led by physicists in response to findings that experimental reports lack consistency. The researchers made the shocking discovery that nine out of 10 scientific papers miss experimental information that is crucial to ensure the reproducibility of the reported work.
Published 3D internal structure of rechargeable batteries revealed


Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.
Published Experiment unlocks bizarre properties of strange metals


Physicists are learning more about the bizarre behavior of 'strange metals,' which operate outside the normal rules of electricity.
Published Electrocatalysis under the atomic force microscope


A further development in atomic force microscopy now makes it possible to simultaneously image the height profile of nanometer-fine structures as well as the electric current and the frictional force at solid-liquid interfaces. A team has succeeded in analyzing electrocatalytically active materials and gaining insights that will help optimize catalysts. The method is also potentially suitable for studying processes on battery electrodes, in photocatalysis or on active biomaterials.
Published New kind of transistor could shrink communications devices on smartphones


One month after announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a team has now demonstrated a reconfigurable transistor using that material. Their work paves the way for single amplifiers that can do the work of multiple conventional amplifiers, among other possibilities.
Published New 'camera' with shutter speed of 1 trillionth of a second sees through dynamic disorder of atoms


Researchers have developed a new 'camera' that sees the local disorder in materials. Its key feature is a variable shutter speed: because the disordered atomic clusters are moving, when the team used a slow shutter, the dynamic disorder blurred out, but when they used a fast shutter, they could see it. The method uses neutrons to measure atomic positions with a shutter speed of around one picosecond, a trillion times faster than normal camera shutters.
Published Electric vehicle batteries could get big boost with new polymer coating


Scientists have developed a polymer coating that could enable longer lasting, more powerful lithium-ion batteries for electric vehicles. The advance opens up a new approach to developing EV batteries that are more affordable and easy to manufacture.
Published Controlling electric double layer dynamics for next generation all-solid-state batteries


Development of all-solid-state batteries is crucial to achieve carbon neutrality. However, their high surface resistance causes these batteries to have low output, limiting their applications. To this end, researchers have employed a novel technique to investigate and modulate electric double layer dynamics at the solid/solid electrolyte interface. The researchers demonstrate unprecedented control of response speed by over two orders of magnitude, a major steppingstone towards realization of commercial all-solid-state batteries.
Published Extreme fast charging capability in lithium-ion batteries


Lithium-ion batteries dominate among energy storage devices and are the battery of choice for the electric vehicle industry. Improving battery performance is a constant impetus to current research in this field. Towards this end, a group of researchers has synthesized a lithium borate-type aqueous polyelectrolyte binder for graphite anodes. Their new binder helped improve Li-ion diffusion and lower impedance compared to conventional batteries.