Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Energy: Fossil Fuels, Geoscience: Earthquakes
Published Puerto Rico tsunami deposit could have come from pre-Columbian megathrust earthquake



Tsunami deposits identified in a coastal mangrove pond in Northwest Puerto Rico could have come from a megathrust earthquake at the Puerto Rico Trench that occurred between 1470 and 1530, according to new research.
Published Turkey's next quake: Research shows where, how bad -- but not 'when'



Using remote sensing, geophysicists have documented the massive Feb. 6 quake that killed more than 50,000 people in Eastern Turkey and toppled more than 100,000 buildings. Alarmingly, researchers found that a section of the fault remains unbroken and locked -- a sign that the plates there may, when friction intensifies, generate another magnitude 6.8 earthquake when it finally gives way.
Published New USGS-FEMA report updates economic risk from earthquakes



Even though most of the economic losses are concentrated in California and along the West Coast due to that region's high seismic hazard levels, significant population, and building exposure, earthquake risk is spread throughout the country. For example, there is a combined $3.1 billion per year in projected losses across the central U.S., Rocky Mountain region, Alaska, Hawaii, Puerto Rico and the Virgin Islands.
Published Plate tectonic processes in the Pacific and Atlantic during the Cretaceous period have shaped the Caribbean region to this day



Earthquakes and volcanism occur as a result of plate tectonics. The movement of tectonic plates themselves is largely driven by the process known as subduction. The question of how new active subduction zones come into being, however, is still under debate. An example of this is the volcanic Lesser Antilles arc in the Caribbean. A research team recently developed models that simulated the occurrences in the Caribbean region during the Cretaceous, when a subduction event in the Eastern Pacific led to the formation of a new subduction zone in the Atlantic. The computer simulations show how the collision of the old Caribbean plateau with the Greater Antilles arc contributed to the creation of this new Atlantic subduction zone. Some 86 million years ago, the triggered processes subsequently resulted in a major mantle flow and thus to the development of the Caribbean large igneous province.
Published Warm liquid spewing from Oregon seafloor comes from Cascadia fault, could offer clues to earthquake hazards



Oceanographers discovered warm, chemically distinct liquid shooting up from the seafloor about 50 miles off Newport. They named the unique underwater spring 'Pythia's Oasis.' Observations suggest the spring is sourced from water 2.5 miles beneath the seafloor at the plate boundary, regulating stress on the offshore subduction zone fault.
Published Shutting down nuclear power could increase air pollution



A new study shows that if U.S. nuclear power plants are retired, the burning of coal, oil, and natural gas to fill the energy gap could cause more than 5,000 premature deaths.
Published Moving towards 3 degrees of warming -- the phasing out of coal is too slow



The use of coal power is not decreasing fast enough. The Paris Agreement's target of a maximum of 2 degrees of warming appear to be missed, and the world is moving towards a temperature increase of 2.5 -- 3 degrees. At the same time it is feasible to avoid higher warming.
Published Was plate tectonics occurring when life first formed on Earth?



Researchers used small zircon crystals to unlock information about magmas and plate tectonic activity in early Earth. The research provides chemical evidence that plate tectonics was most likely occurring more than 4.2 billion years ago when life is thought to have first formed on our planet. This finding could prove beneficial in the search for life on other planets.
Published Sailing cargo ships can benefit from new aerodynamic tech



A research team has demonstrated a unique method that reduces the aerodynamic resistance of ships by 7.5 per cent. This opens the way for large cargo ships borne across the oceans by wind alone, as wind-powered ships are more affected by aerodynamic drag than fossil-fueled ones.
Published Eco-efficient cement could pave the way to a greener future


Scientists develop process to remove toxic heavy metals from coal fly ash, making for greener, stronger concrete.
Published Team uses natural catalysts to develop low-cost way of producing green hydrogen


Researchers have developed a practical way to produce green hydrogen using sustainable catalysts and say their work is a major step towards production simpler, more affordable and more scalable.
Published Probe where the protons go to develop better fuel cells



Researchers have uncovered the chemical inner-workings of an electrolyte they developed for a new generation of solid oxide fuel cells. To uncover the location of the proton-introduction reaction, the team studied extensively the hydration reaction of their scandium-substituted barium zirconate perovskite through a combination of synchrotron radiation analysis, large-scale simulations, machine learning, and thermogravimetric analysis. The new data has the potential to accelerate the development of more efficient fuel cells.
Published Public acceptance of fossil fuel subsidy removal could be improved in developing countries


People might be more positive to the removal of fuel subsidies if told where the money would be spent instead. This has been shown in a study which investigated attitudes towards removing fossil fuel subsidies in five developing countries.
Published Rsearchers examine combined effects of two combustion technologies on the emission of coal-fired boilers


There is currently a large dependence on coal for power generation. As coal-fired plants cause environmental and health hazards, technologies such as swirl flow and air staging have been proposed to mitigate the pollutants in their emissions. However, it is unclear how effective these technologies are in reducing the environmental costs of these plants. Now, researchers have provided insights on this front in a new study, delineating their efficacies with experiments and simulations.
Published Switching to hydrogen fuel could prolong the methane problem


Hydrogen is often heralded as the clean fuel of the future, but new research suggests that leaky hydrogen infrastructure could end up increasing atmospheric methane levels, which would cause decades-long climate consequences.
Published Messages about the 'felt intensity' of earthquakes via app can potentially assist early disaster management


After an earthquake, it is crucial in the early phase of disaster management to obtain a rapid assessment of the severity of the impact on the affected population in order to be able to initiate adequate emergency measures. A first quick and good assessment of whether an earthquake causes severe or minor damage can often be given after only 10 minutes by information from affected people about the 'felt intensity' of the earthquake.
Published Plastic upcycling to close the carbon cycle



A new method to convert waste plastic to fuel and raw materials promises to help close the carbon cycle at mild temperature and with high yield.
Published Ramping up domestic graphite production could aid the green energy transition


Given the growing importance of graphite in energy storage technologies, a team of esearchers has conducted a study exploring ways to reduce reliance on imports of the in high-demand mineral, which powers everything from electric vehicles (EVs) to cell phones.
Published Deep earthquakes could reveal secrets of the Earth's mantle


A new study suggests there may be a layer of surprisingly fluid rock ringing the Earth, at the very bottom of the upper mantle.
Published Bouncing seismic waves reveal distinct layer in Earth's inner core


Data captured from seismic waves caused by earthquakes has shed new light on the deepest parts of Earth's inner core, according to seismologists.