Showing 20 articles starting at article 401

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: General, Energy: Fossil Fuels

Return to the site home page

Chemistry: General Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Conversion process turns greenhouse gas into ethylene      (via sciencedaily.com)     Original source 

Engineers have created a more efficient way of converting carbon dioxide into valuable products while simultaneously addressing climate change.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Towards A Better Way of Releasing Hydrogen Stored in Hydrogen Boride Sheets      (via sciencedaily.com)     Original source 

Hydrogen stored in hydrogen boride sheets can be efficiently released electrochemically, report scientists. Through a series of experiments, they demonstrated that dispersing these sheets in an organic solvent and applying a small voltage is enough to release all the stored hydrogen efficiently. These findings suggest hydrogen boride sheets could soon become a safe and convenient way to store and transport hydrogen, which is a cleaner and more sustainable fuel.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Molecular manganese complex as superphotooxidant      (via sciencedaily.com)     Original source 

Highly reducing or oxidizing photocatalysts are a fundamental challenge in photochemistry. Only a few transition metal complexes with Earth-abundant metal ions have so far advanced to excited state oxidants, including chromium, iron, and cobalt. All these photocatalysts require high energy light for excitation and their oxidizing power has not yet been fully exploited. Furthermore, precious and hence expensive metals are the decisive ingredients in most cases. A team of researchers has now developed a new molecular system based on the element manganese. Manganese, as opposed to precious metals, is the third most abundant metal after iron and titanium and hence widely available and very cheap.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General
Published

New process allows full recovery of starting materials from tough polymer composites      (via sciencedaily.com)     Original source 

In a win for chemistry, inventors have designed a closed-loop path for synthesizing an exceptionally tough carbon-fiber-reinforced polymer and later recovering all of its starting materials.

Chemistry: General Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Researchers unveil method to detect 'forever chemicals' in under 3 minutes      (via sciencedaily.com)     Original source 

PFAS have earned the name 'forever chemicals' with good reason -- the human-made compounds, which can take thousands of years to degrade and are found in everything from grease-resistant food packaging to water-repellent clothing, have made their way into nearly half the U.S. tap water supply.

Chemistry: Biochemistry Chemistry: General
Published

Nanofiber bandages fight infection, speed healing      (via sciencedaily.com)     Original source 

Researchers have identified a new way to harness the antioxidant and antibacterial properties of a botanical compound to make nanofiber-coated cotton bandages that fight infection and help wounds heal more quickly.

Biology: Microbiology Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Scientists develop artificial 'worm gut' to break down plastics      (via sciencedaily.com)     Original source 

A team of scientists has developed an artificial 'worm gut' to break down plastics, offering hope for a nature-inspired method to tackle the global plastic pollution problem.

Biology: Botany Biology: Cell Biology Chemistry: General Energy: Fossil Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Inexpensive, carbon-neutral biofuels are finally possible      (via sciencedaily.com)     Original source 

When it comes to making fuel from plants, the first step has always been the hardest -- breaking down the plant matter. A new study finds that introducing a simple, renewable chemical to the pretreatment step can finally make next-generation biofuel production both cost-effective and carbon neutral.

Chemistry: General Engineering: Robotics Research Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

3D printed nanocellulose upscaled for green architectural applications      (via sciencedaily.com)     Original source 

For the first time, a hydrogel material made of nanocellulose and algae has been tested as an alternative, greener architectural material. The study shows how the abundant sustainable material can be 3D printed into a wide array of architectural components, using much less energy than conventional construction methods.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

BESSY II: Molecular orbitals determine stability      (via sciencedaily.com)     Original source 

Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. A team has now analyzed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.

Energy: Fossil Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues
Published

Japan's electric vehicle transition by 2035 may be insufficient to combat the climate crisis, but there are solutions      (via sciencedaily.com)     Original source 

Researchers report that Japan's policy of banning the sale of new gas vehicles by 2035 may be insufficient to reduce the country's CO2 emissions. The team's analysis showed that to effectively reach their climate goals, Japan must also implement policies that extend vehicle lifetime, implement more renewable energy into its energy sector, and decarbonize the manufacturing process of vehicles.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Researchers reveal elusive bottleneck holding back global effort to convert carbon dioxide waste into usable products      (via sciencedaily.com)     Original source 

Think of it as recycling on the nanoscale: a tantalizing electrochemical process that can harvest carbon before it becomes air pollution and restructure it into the components of everyday products. The drive to capture airborne carbon dioxide from industrial waste and make it into fuel and plastics is gaining momentum after a team of researchers uncovered precisely how the process works and where it bogs down.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Structural isomerization of individual molecules using a scanning tunneling microscope probe      (via sciencedaily.com)     Original source 

An international research team has succeeded in controlling the chirality of individual molecules through structural isomerization. The team also succeeded in synthesizing highly reactive diradicals with two unpaired electrons. These achievements were made using a scanning tunneling microscope probe at low temperatures.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries
Published

Chemists decipher reaction process that could improve lithium-sulfur batteries      (via sciencedaily.com)     Original source 

Lithium-sulfur batteries have exceptional theoretical capacity and performance in combination with an element in abundant supply. But the intricate reaction mechanism, particularly during discharge, has been challenging to solve. Researchers have identified the key pathways to a complex sulfur reduction reaction that leads to energy loss and reduced battery life span. The study's findings establish the whole reaction network for the first time and offer insight into electrocatalyst design for improved batteries.

Chemistry: Biochemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Batteries Energy: Fossil Fuels Environmental: General Geoscience: Environmental Issues
Published

Improving fuel cell durability with fatigue-resistant membranes      (via sciencedaily.com)     Original source 

In hydrogen fuel cells, electrolyte membranes frequently undergo deformation and develop cracks during operation. A research team has recently introduced a fatigue-resistant polymer electrolyte membrane for hydrogen fuel cells, employing an interpenetrating network of Nafion (a plastic electrolyte) and perfluoropolyether (a rubbery polymer). This innovation will not only improve fuel cell vehicles but also promises advancements in diverse technologies beyond transportation, spanning applications from drones to desalination filters and backup power sources.

Chemistry: General Engineering: Robotics Research
Published

GPT-3 transforms chemical research      (via sciencedaily.com)     Original source 

Scientists demonstrate how GPT-3 can transform chemical analysis, making it faster and more user-friendly.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

Solving an age-old mystery about crystal formation      (via sciencedaily.com)     Original source 

A crystals expert has published an answer to how crystals are formed and how molecules become a part of them, solving an age-old mystery about crystal formation.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Unveiling the generation principles of charged particles 'trion' in 2D semiconductor      (via sciencedaily.com)     Original source 

Researchers pioneer dynamic manipulation and the generation principles of trion at the nanoscale using tip-enhanced cavity-spectroscopy.