Showing 20 articles starting at article 581
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Energy: Fossil Fuels
Published New approach to water electrolysis for green hydrogen



Scientists have pioneered a novel approach to water electrolysis catalysts for green hydrogen production.
Published Photo battery achieves competitive voltage



Researchers have developed a monolithically integrated photo battery using organic materials. The photo battery achieves an unprecedented high discharge potential of 3.6 volts. The system is capable of powering miniature devices.
Published Charged 'molecular beasts' the basis for new compounds



Mass spectrometers are high-tech machines that play an important role in our society. They are highly sensitive analytical instruments that are indispensable in areas such as medical diagnostics, food quality control and the detection of hazardous chemical substances. A research group is working to modify mass spectrometers so that they can be used for a completely different purpose: the chemical synthesis of new molecules.
Published Predicting saltwater intrusion into groundwater using Plymouth, Mass. as test case



As the world warms and ice sheets melt, the ocean continually rises. The greater Boston area can expect to see between one and six feet of sea level rise by 2100, according to recent estimates. To find out what this rise might mean for freshwater supplies, a team of hydrogeologists developed an innovative new model that can not only predict saltwater intrusion over the next 75 years, but also pinpoint the main sources of salt contamination today -- road salt and human development.
Published Researchers develop solid-state thermal transistor for better heat management



A team of researchers has unveiled a first-of-its-kind stable and fully solid-state thermal transistor that uses an electric field to control a semiconductor device's heat movement. The group's study details how the device works and its potential applications. With top speed and performance, the transistor could open new frontiers in heat management of computer chips through an atomic-level design and molecular engineering. The advance could also further the understanding of how heat is regulated in the human body.
Published Stronger, stretchier, self-healing plastic



An innovative plastic, stronger and stretchier than the current standard type and which can be healed with heat, remembers its shape and partially biodegradable, has been developed. They created it by adding the molecule polyrotaxane to an epoxy resin vitrimer, a type of plastic. Named VPR, the material can hold its form and has strong internal chemical bonds at low temperatures.
Published Making electric vehicles last



In the realm of electric vehicles, powered by stored electric energy, the key lies in rechargeable batteries capable of enduring multiple charge cycles. Lithium-ion batteries have been the poster child for this application. However, due to limitations in energy storage capacity and other associated challenges, the focus has shifted to an intriguing alternative known as dual-ion batteries (DIBs).
Published 'Lab on a chip' genetic test device can identify viruses within three minutes with top-level accuracy



Compact genetic testing device could be used to detect a range of pathogens, or conditions including cancer.
Published Self-powered microbial fuel cell biosensor for monitoring organic freshwater pollution



Biodegradable waste from plant and animal sources released into freshwater ecosystems is a significant environmental concern. Nonetheless, current methods for assessing water quality seem more or less impractical due to their complexity and high costs. In a promising development, a team of researchers has successfully constructed a self-sustaining and buoyant biosensor using inexpensive carbon-based materials for monitoring water quality at the inlets of freshwater lakes and rivers.
Published Chemists make breakthrough in drug discovery chemistry



Chemists offer two new methods to develop a way to easily replace a carbon atom with a nitrogen atom in a molecule. The findings could make it easier to develop new drugs.
Published Efficient biohybrid batteries



Formic acid, which can be produced electrochemically from carbon dioxide, is a promising energy carrier. A research team has now developed a fast-charging hybrid battery system that combines the electrochemical generation of formic acid as an energy carrier with a microbial fuel cell. This novel, fast-charging biohybrid battery system can be used to monitor the toxicity of drinking water, just one of many potential future applications.
Published Humans are disrupting natural 'salt cycle' on a global scale, new study shows



A new paper revealed that human activities are making Earth's air, soil and freshwater saltier, which could pose an 'existential threat' if current trends continue. Geologic and hydrologic processes bring salts to Earth's surface over time, but human activities such as mining and land development are rapidly accelerating this natural 'salt cycle.'
Published Photography: One-stop solution for shaping and outlining objects



A joint research team has developed a dual metalens that can switch between shooting modes based on light conditions.
Published Microplastics' shape determines how far they travel in the atmosphere



Micron-size microplastic debris can be carried by the jet stream across oceans and continents, and their shape plays a crucial role in how far they travel.
Published New frequency comb can identify molecules in 20-nanosecond snapshots



Researchers have developed a device that can detect the presence of specific molecules in a sample every 20 nanoseconds, or billionths of a second. With this new capability, researchers can potentially use frequency combs to better understand the split-second intermediate steps in fast-moving processes ranging from the workings of hypersonic jet engines to the chemical reactions between enzymes that regulate cell growth.
Published Engineers develop an efficient process to make fuel from carbon dioxide



Researchers developed an efficient process that can convert carbon dioxide into formate, a nonflammable liquid or solid material that can be used like hydrogen or methanol to power a fuel cell and generate electricity.
Published How robots can help find the solar energy of the future



To quickly and accurately characterize prospective materials for use in solar energy, researchers built an automated system to perform laboratory experiments and used machine learning to help analyze the data they recorded. Their goal is to identify semiconductor materials for use in photovoltaic solar energy, which are highly efficient and have low toxicity.
Published 3D printed reactor core makes solar fuel production more efficient



Using a new 3D printing technique, researchers have developed special ceramic structures for a solar reactor. Initial experimental testing show that these structures can boost the production yield of solar fuels.
Published A superatomic semiconductor sets a speed record



The search is on for better semiconductors. A team of chemists describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2.
Published A potentially cheaper and 'cooler' way for hydrogen transport



Researchers have developed a new hydrogen energy carrier material capable storing hydrogen energy efficiently and potentially more cheaply. Each molecule can store one electron from hydrogen at room temperature, store it for up the three months, and can be its own catalyst to extract said electron. Moreover, as the compound is made primarily of nickel, its cost is relatively low.