Showing 20 articles starting at article 261
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Engineering: Biometric
Published It's not only opposites that attract -- new study shows like-charged particles can come together



A study shows that similarly charged particles can sometimes attract, rather than repel. The team found that like-charged particles suspended in liquids can attract one another at long-range, depending on the solvent and the sign of the charge. The study has immediate implications for processes that involve interactions in solution across various length-scales, including self-assembly, crystallization, and phase separation.
Published Turning waste into gold



Researchers have recovered gold from electronic waste. Their highly sustainable new method is based on a protein fibril sponge, which the scientists derive from whey, a food industry byproduct.
Published When the music changes, so does the dance: Controlling cooperative electronic states in Kagome metals



Playing a different sound track is, physically speaking, only a minute change of the vibration spectrum, yet its impact on a dance floor is dramatic. People long for this tiny trigger, and as a salsa changes to a tango completely different collective patterns emerge. For such a tiny stimulus to have an effect, the crowd needs to know more than just one dance. Electrons in metals tend to show only one behavior at zero temperature, when all kinetic energy is quenched.
Published A bright idea for recycling rare-earth phosphors from used fluorescent bulbs



Recycling facilities collect glass and mercury from thrown away fluorescent bulbs, but discarded lighting could also supply rare-earth metals for reuse. The 17 metals referred to as rare earths aren't all widely available and aren't easily extracted with existing recycling methods. Now, researchers have found a simpler way to collect slightly magnetic particles that contain rare-earth metals from spent fluorescent bulbs.
Published How molecular 'handedness' emerged in early biology



Chemists fill a major gap in origin-of-life theories.
Published Under pressure: New tool for precise measurement of superconductors



Researchers think they have a foundational tool for the thorny problem of how to measure and image the behavior of hydride superconductors at high pressure. They report creatively integrating quantum sensors into a diamond anvil cell, enabling direct readouts of the pressurized material's electrical and magnetic properties.
Published Researchers develop novel method to photosynthesize hydrogen peroxide using water and air



Researchers have developed a microporous covalent organic framework with dense donor-acceptor lattices and engineered linkages for the efficient and clean production of hydrogen peroxide through the photosynthesis process with water and air.
Published Light stimulates a new twist for synthetic chemistry



Molecules that are induced by light to rotate bulky groups around central bonds could be developed into photo-activated bioactive systems, molecular switches, and more.
Published Diamonds are a chip's best friend



New technologies aim to produce high-purity synthetic crystals that become excellent semiconductors when doped with impurities as electron donors or acceptors of other elements. Researchers have now determined the magnitude of the spin-orbit interaction in acceptor-bound excitons in a semiconductor. They broke through the energy resolution limit of conventional luminescence measurements by directly observing the fine structure of bound excitons in boron-doped blue diamond, using optical absorption.
Published Researchers use Hawk supercomputer and lean into imperfection to improve solar cell efficiency



Solar energy is one of the most promising, widely adopted renewable energy sources, but the solar cells that convert light into electricity remains a challenge. Scientists have turned to the High-Performance Computing Center Stuttgart to understand how strategically designing imperfections in the system could lead to more efficient energy conversion.
Published Imaging grain boundaries that impede lithium-ion migration in solid-state batteries



A research team has developed a new technique to image grain boundaries obstructing lithium-ion migration in solid-state batteries -- a promising type of next-generation battery.
Published AI-driven lab speeds catalysis research



Researchers have developed a 'self-driving' lab that uses artificial intelligence (AI) and automated systems to provide in-depth analyses of catalytic reactions used in chemical research and manufacturing. The new tool, called Fast-Cat, can provide more information in five days than is possible in six months of conventional testing.
Published A new theoretical development clarifies water's electronic structure



Scientists have decoded the electronic structure of water, opening up new perspectives for technological and environmental applications.
Published The mutual neutralization of hydronium and hydroxide



Researchers have been able to directly visualize the neutral products of the mutual neutralization of hydronium and hydroxide, and report three different product channels: two channels were attributed to a predominant electron-transfer mechanism, and a smaller channel was associated with proton transfer. The two-beam collision experiment is an important step toward understanding the quantum dynamics of this fundamental reaction.
Published Chemists synthesize unique anticancer molecules using novel approach



Nearly 30 years ago, scientists discovered a unique class of anticancer molecules in a family of bryozoans, a phylum of marine invertebrates found in tropical waters. The chemical structures of these molecules, which consist of a dense, highly complex knot of oxidized rings and nitrogen atoms, has attracted the interest of organic chemists worldwide, who aimed to recreate these structures from scratch in the laboratory. However, despite considerable effort, it has remained an elusive task. Until now, that is. A team of chemists has succeeded in synthesizing eight of the compounds for the first time using an approach that combines inventive chemical strategy with the latest technology in small molecule structure determination.
Published A new vibrant blue pottery pigment with less cobalt



Whether ultramarine, cerulean, Egyptian or cobalt, blue pigments have colored artworks for centuries. Now, seemingly out of the blue, scientists have discovered a new blue pigment that uses less cobalt but still maintains a brilliant shine. Though something like this might only happen once in a blue moon, the cobalt-doped barium aluminosilicate colorant withstands the high temperatures found in a kiln and provides a bright color to glazed tiles.
Published Graphene research: Numerous products, no acute dangers found by study



Graphene is an enormously promising material. It consists of a single layer of carbon atoms arranged in a honeycomb pattern and has extraordinary properties: exceptional mechanical strength, flexibility, transparency and outstanding thermal and electrical conductivity. If the already two-dimensional material is spatially restricted even more, for example into a narrow ribbon, controllable quantum effects can be created. This could enable a wide range of applications, from vehicle construction and energy storage to quantum computing.
Published An environmentally friendly way to turn seafood waste into value-added products



Reduce, reuse, recycle, and repurpose: These are all ways we can live more sustainably. One tricky aspect of recycling, though, is that sometimes the recycling process is chemically intensive, and this is the case for recycling one of the world's most abundant materials -- chitin. Researchers have tackled this problem and found a way to sustainably recover chitin from seafood waste.
Published Revolutionary breakthrough in solar energy: Most efficient QD solar cells



A research team has unveiled a novel ligand exchange technique that enables the synthesis of organic cation-based perovskite quantum dots (PQDs), ensuring exceptional stability while suppressing internal defects in the photoactive layer of solar cells.
Published It's the spin that makes the difference



Biomolecules such as amino acids and sugars occur in two mirror-image forms -- in all living organisms, however, only one is ever found. Why this is the case is still unclear. Researchers have now found evidence that the interplay between electric and magnetic fields could be at the origin of this phenomenon.