Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology
Published

How to shift gears in a molecular motor      (via sciencedaily.com)     Original source 

Scientists have long strived to develop artificial molecular motors that can convert energy into directed motion. Researchers have now presented a solution to a challenging problem: how motion can be transferred in a controlled manner from one place to another through a 'molecular gear'. Molecular motors have the potential for use in, for example, energy storage applications and medicine.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Batteries Energy: Technology
Published

Polymer power: Researchers enhance the safety of lithium batteries      (via sciencedaily.com)     Original source 

Lithium-ion batteries face safety concerns as a result of internal separator issues which often lead to short circuits. Scientists have now developed a method to improve the stability and properties of separators with a layer of silicon dioxide and other functional molecules. Batteries employing these separators demonstrated improved performance and reduced growth of disruptive root-like structures, paving the way for high-safety batteries that can aid the adoption of electric vehicles and advanced energy storage systems.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

Deep learning reveals molecular secrets of explosive perchlorate salts      (via sciencedaily.com)     Original source 

Perchlorate compounds are known for their explosive nature. To understand what makes these compounds so explosive, a team of researchers developed a novel deep learning-based method that analyses their crystal structure and molecular interactions to elucidate their physical properties. This novel technique avoids dangerous laboratory-based experiments and uses data to study the nature of compounds. Overall, the study marks a significant step towards data-driven and artificial intelligence-based methods for chemical research.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Plants and Animals
Published

Cellular scaffolding rewired to make microscopic railways      (via sciencedaily.com)     Original source 

Researchers were able to control the growth of thin, branching networks that support cellular structure and help cells function. The networks, called microtubules, can exert force and precisely transport chemicals at a subcellular level.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Autonomous synthesis robot uses AI to speed up chemical discovery      (via sciencedaily.com)     Original source 

Chemists have developed an autonomous chemical synthesis robot with an integrated AI-driven machine learning unit. Dubbed 'RoboChem', the benchtop device can outperform a human chemist in terms of speed and accuracy while also displaying a high level of ingenuity. As the first of its kind, it could significantly accelerate chemical discovery of molecules for pharmaceutical and many other applications.

Chemistry: Inorganic Chemistry Mathematics: General Mathematics: Modeling Physics: General
Published

New method flips the script on topological physics      (via sciencedaily.com)     Original source 

The branch of mathematics known as topology has become a cornerstone of modern physics thanks to the remarkable -- and above all reliable -- properties it can impart to a material or system. Unfortunately, identifying topological systems, or even designing new ones, is generally a tedious process that requires exactly matching the physical system to a mathematical model. Researchers have demonstrated a model-free method for identifying topology, enabling the discovery of new topological materials using a purely experimental approach.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers add a 'twist' to classical material design      (via sciencedaily.com)     Original source 

Researchers grew a twisted multilayer crystal structure for the first time and measured the structure's key properties. The twisted structure could help researchers develop next-generation materials for solar cells, quantum computers, lasers and other devices.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Hacking DNA to make next-gen materials      (via sciencedaily.com)     Original source 

Scientists have developed a universal method for producing a wide variety of designed metallic and semiconductor 3D nanostructures -- the potential base materials for next-generation semiconductor devices, neuromorphic computing, and advanced energy applications. The new method, which uses a 'hacked' form of DNA that instructs molecules to organize themselves into targeted 3D patterns, is the first of its kind to produce robust nanostructures from multiple material classes.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels
Published

New sustainable method for creating organic semiconductors      (via sciencedaily.com)     Original source 

Researchers have developed a new, more environmentally friendly way to create conductive inks for use in organic electronics such as solar cells, artificial neurons, and soft sensors. The findings pave the way for future sustainable technology.

Chemistry: General Chemistry: Inorganic Chemistry
Published

New reagent improves the process of making sulfur-containing compounds that may be used in medicines      (via sciencedaily.com)     Original source 

Researchers describe their development of a new reagent that allows a more efficient approach to make sulfoximines, sulfonimidoyl fluorides and sulfonimidamides that may be used in medicines.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Scientists advance affordable, sustainable solution for flat-panel displays and wearable tech      (via sciencedaily.com)     Original source 

Scientists have developed 'supramolecular ink,' a new 3D-printable OLED (organic light-emitting diode) material made of inexpensive, Earth-abundant elements instead of costly scarce metals. The advance could enable more affordable and environmentally sustainable OLED flat-panel displays as well as 3D-printable wearable technologies and lighting.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Plumber's nightmare structure in block polymers      (via sciencedaily.com)     Original source 

Scientists solve a long-standing block copolymer research conundrum through polymer chain end modifications. The study garners substantial academic attention by achieving tangible manifestations of intricate polymer structures that were previously solely theoretical.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Clutch-stack-driven molecular gears in crystals could propel material innovation      (via sciencedaily.com)     Original source 

Temperature-controlled, reversible shifting of molecular gear motion in a solid crystal opens new possibilities for material design.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

Researchers create faster and cheaper way to print tiny metal structures with light      (via sciencedaily.com)     Original source 

Researchers have developed a light-based means of printing nano-sized metal structures that is 480 times faster and 35 times cheaper than the current conventional method. It is a scalable solution that could transform a scientific field long reliant on technologies that are prohibitively expensive and slow. Their method is called superluminescent light projection (SLP).

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Offbeat: General
Published

DNA becomes our 'hands' to construct advanced nanoparticle materials      (via sciencedaily.com)     Original source 

A new paper describes a significant leap forward in assembling polyhedral nanoparticles. The researchers introduce and demonstrate the power of a novel synthetic strategy that expands possibilities in metamaterial design. These are the unusual materials that underpin 'invisibility cloaks' and ultrahigh-speed optical computing systems.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemical synthesis: New strategy for skeletal editing on pyridines      (via sciencedaily.com)     Original source 

A team has introduced a strategy for converting carbon-nitrogen atom pairs in a frequently used ring-shaped compound into carbon-carbon atom pairs. The method has potential in the quest for active ingredients for new drugs, for example.