Showing 20 articles starting at article 101

< Previous 20 articles        Next 20 articles >

Categories: Energy: Nuclear, Engineering: Biometric

Return to the site home page

Energy: Nuclear Physics: Quantum Physics
Published

'Ghostly' neutrinos provide new path to study protons      (via sciencedaily.com) 

Scientists have discovered a new way to investigate the structure of protons using neutrinos, known as 'ghost particles.'

Engineering: Biometric
Published

New DNA biosensor could unlock powerful, low-cost clinical diagnostics      (via sciencedaily.com) 

By flagging disease-associated DNA biomarkers, medical professionals can make early diagnoses and provide personalized treatments, but the typical screening methods can be laborious, expensive or limited in scope. Now, a new biosensor could pave the way to accessible and expansive diagnostics.

Computer Science: General Energy: Nuclear
Published

Color images from the shadow of a sample      (via sciencedaily.com) 

A research team has developed a new method to produce X-ray images in color. In the past, the only way to determine the chemical composition of a sample and the position of its components using X-ray fluorescence analysis was to focus the X-rays and scan the whole sample. This is time-consuming and expensive. Scientists have now developed an approach that allows an image of a large area to be produced from a single exposure, without the need for focusing and scanning.

Energy: Nuclear Engineering: Nanotechnology
Published

Researchers gain deeper understanding of mechanism behind superconductors      (via sciencedaily.com) 

Physicists have once again gained a deeper understanding of the mechanism behind superconductors. This brings researchers one step closer to their goal of developing the foundations for a theory for superconductors that would allow current to flow without resistance and without energy loss. The researchers found that in superconducting copper-oxygen bonds, called cuprates, there must be a very specific charge distribution between the copper and the oxygen, even under pressure.

Chemistry: Thermodynamics Energy: Nuclear
Published

Mitigating corrosion by liquid tin could lead to better cooling in fusion reactors      (via sciencedaily.com) 

Researchers have clarified the chemical compatibility between high temperature liquid metal tin (Sn) and reduced activation ferritic martensitic, a candidate structural material for fusion reactors. This discovery has paved the way for the development of a liquid metal tin divertor, which is an advanced heat-removal component of fusion reactors. A device called a divertor is installed in the fusion reactors to maintain the purity of the plasma. For divertors, there has been demand for liquid metals that can withstand extremely large heat loads from high-temperature plasma.

Energy: Nuclear
Published

National Ignition Facility achieves fusion ignition      (via sciencedaily.com) 

The U.S. Department of Energy (DOE) and DOE's National Nuclear Security Administration (NNSA) has announced the achievement of fusion ignition at Lawrence Livermore National Laboratory (LLNL) -- a major scientific breakthrough decades in the making. On Dec. 5, a team at LLNL's National Ignition Facility (NIF) conducted the first controlled fusion experiment in history to reach this milestone, also known as scientific energy breakeven, meaning it produced more energy from fusion than the laser energy used to drive it.

Computer Science: Quantum Computers Energy: Nuclear
Published

Quantum algorithm of the direct calculation of energy derivatives developed for molecular geometry optimization      (via sciencedaily.com) 

Researchers have successfully extended the quantum phase difference estimation algorithm, a general quantum algorithm for the direct calculations of energy gaps, to enable the direct calculation of energy differences between two different molecular geometries. This allows for the computation, based on the finite difference method, of energy derivatives with respect to nuclear coordinates in a single calculation.

Energy: Nuclear
Published

Small modular reactor waste analysis report      (via sciencedaily.com) 

Small modular nuclear reactors, which offer greater flexibility and lower upfront cost than large nuclear reactors, have both some advantages and disadvantages when it comes to nuclear waste generation.

Chemistry: Thermodynamics Energy: Nuclear Space: Structures and Features
Published

How does radiation travel through dense plasma?      (via sciencedaily.com) 

Researchers provide experimental data about how radiation travels through dense plasmas. Their data will improve plasma models, which allow scientists to better understand the evolution of stars and may aid in the realization of controlled nuclear fusion as an alternative energy source.

Energy: Nuclear
Published

How long can exotic nuclei survive at the edge of stability?      (via sciencedaily.com) 

A new study has measured how long it takes for several kinds of exotic nuclei to decay. The paper marks the first experimental result from the Facility for Rare Isotope Beams. It is just a small taste of what's to come at the facility, which will become 400 times more powerful over the coming years. Scientists used the facility to better understand nuclei, the collection of protons and neutrons found at the heart of atoms. Understanding these basic building blocks allows scientists to refine their best models and has applications in medicine, national security, and industry.

Energy: Nuclear
Published

Material separates heavy water from ordinary water      (via sciencedaily.com) 

A research group has made a material that can effectively separate heavy water from normal water at room temperature. Until now, this process has been very difficult and energy intensive. The findings have implications for industrial -- and even biological -- processes that involve using different forms of the same molecule.

Engineering: Biometric Physics: Acoustics and Ultrasound
Published

Automatic speaker recognition technology outperforms human listeners in the courtroom      (via sciencedaily.com) 

The forensic-voice-comparison system, based on state-of-the-art automatic-speaker-recognition technology, outperformed all the listeners.

Energy: Nuclear
Published

Physicists confirm hitch in proton structure      (via sciencedaily.com) 

A new precision measurement of the proton's electric polarizability has confirmed an unexplained bump in the data. The proton's electric polarizability shows how susceptible the proton is to deformation, or stretching, in an electric field. Like size or charge, the electric polarizability is a fundamental property of proton structure. The data bump was widely thought to be a fluke when seen in earlier measurements, so this new, more precise measurement confirms the presence of the anomaly and signals that an unknown facet of the strong force may be at work.

Energy: Nuclear
Published

Our brains use quantum computation      (via sciencedaily.com) 

A team of scientists believe our brains could use quantum computation, after adapting an idea developed to prove the existence of quantum gravity to explore the human brain and its workings. The brain functions measured were also correlated to short-term memory performance and conscious awareness, suggesting quantum processes are also part of cognitive and conscious brain functions. Quantum brain processes could explain why we can still outperform supercomputers when it comes to unforeseen circumstances, decision making, or learning something new, while the discovery may also shed light on consciousness, the workings of which remain scientifically difficult to understand and explain.

Energy: Nuclear
Published

Hackmanite mineral changes color also upon exposure to nuclear radiation      (via sciencedaily.com) 

Researchers have long studied the color-changing properties of the natural mineral hackmanite upon exposure to UV radiation or X-rays. Now, the research group studied the reactions of synthetic hackmanite to nuclear radiation. The researchers discovered a one-of-a-kind and novel intelligent quality, gamma exposure memory, which allows the use of hackmanite as e.g. radiation detector.

Engineering: Biometric
Published

New report offers blueprint for regulation of facial recognition technology      (via sciencedaily.com) 

A new report outlines a model law for facial recognition technology to protect against harmful use of this technology, but also foster innovation for public benefit.

Engineering: Biometric
Published

How old is that fingerprint?      (via sciencedaily.com) 

Forensic dramas on TV make it seem easy to determine when fingerprints were left at the scene of a crime. In reality, the oils in fingerprints degrade over time, and it's difficult to figure out their age. Now, researchers have discovered molecular markers for changes to these oils over a seven-day time period -- information that could be used to estimate fingerprints' ages more accurately.

Energy: Nuclear
Published

Pushing the boundaries of chemistry: Properties of heaviest element studied so far measured at GSI/FAIR      (via sciencedaily.com) 

Researchers have gained new insights into the chemical properties of the superheavy element flerovium -- element 114 -- at the accelerator facilities of the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt. The measurements show that flerovium is the most volatile metal in the periodic table.

Energy: Nuclear
Published

Less risk, less costs: Portable spectroscopy devices could soon become real      (via sciencedaily.com) 

Nuclear magnetic resonance (NMR) is an analytical tool with a wide range of applications, including the magnetic resonance imaging that is used for diagnostic purposes in medicine. However, NMR often requires powerful magnetic fields to be generated, which limits the scope of its use. Researchers have now discovered potential new ways to reduce the size of the corresponding devices and also the possible associated risk by eliminating the need for strong magnetic fields. This is achieved by combining so-called zero- to ultralow-field NMR with a special hyperpolarization technique.

Energy: Nuclear
Published

Particles pick pair partners differently in small nuclei      (via sciencedaily.com) 

The protons and neutrons that build the nucleus of the atom frequently pair up. Now, a new high-precision experiment has found that these particles may pick different partners depending on how packed the nucleus is. The data also reveal new details about short-distance interactions between protons and neutrons in nuclei and may impact results from experiments seeking to tease out further details of nuclear structure.