Showing 20 articles starting at article 81

< Previous 20 articles        Next 20 articles >

Categories: Energy: Nuclear, Engineering: Biometric

Return to the site home page

Chemistry: Inorganic Chemistry Energy: Nuclear Environmental: General Physics: General Physics: Optics Space: Astrophysics Space: General Space: Structures and Features
Published

Under pressure: Foundations of stellar physics and nuclear fusion investigated      (via sciencedaily.com)     Original source 

Research using the world's most energetic laser has shed light on the properties of highly compressed matter -- essential to understanding the structure of giant planets and stars, and to develop controlled nuclear fusion, a process that could harvest carbon-free energy.

Energy: Nuclear Physics: General Physics: Optics
Published

Keeping time with an atomic nucleus      (via sciencedaily.com)     Original source 

Nuclear clocks could allow scientists to probe the fundamental forces of the universe in the future. Researchers have made a crucial advance in this area as part of an international collaboration.

Energy: Alternative Fuels Energy: Fossil Fuels Energy: Nuclear Energy: Technology Physics: General
Published

Demystifying vortex rings in nuclear fusion, supernovae      (via sciencedaily.com)     Original source 

Better understanding the formation of swirling, ring-shaped disturbances -- known as vortex rings -- could help nuclear fusion researchers compress fuel more efficiently, bringing it closer to becoming a viable energy source. A mathematical model linking these vortices with more pedestrian types, like smoke rings, could help engineers control their behavior in power generation and more.

Energy: Nuclear Physics: General
Published

Simulation provides images from the carbon nucleus      (via sciencedaily.com)     Original source 

What does the inside of a carbon atom's nucleus look like? A new study provides a comprehensive answer to this question. In the study, the researchers simulated all known energy states of the nucleus. These include the puzzling Hoyle state. If it did not exist, carbon and oxygen would only be present in the universe in tiny traces. Ultimately, we therefore also owe it our own existence.

Chemistry: Biochemistry Chemistry: General Energy: Fossil Fuels Energy: Nuclear Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Shutting down nuclear power could increase air pollution      (via sciencedaily.com)     Original source 

A new study shows that if U.S. nuclear power plants are retired, the burning of coal, oil, and natural gas to fill the energy gap could cause more than 5,000 premature deaths.

Chemistry: Biochemistry Engineering: Biometric
Published

Can investigators use household dust as a forensic tool?      (via sciencedaily.com)     Original source 

It is possible to retrieve forensically relevant information from human DNA in household dust.

Energy: Nuclear Physics: General
Published

Cooking up plasmas with microwaves      (via sciencedaily.com)     Original source 

Scientists have created plasmas with fusion-suitable densities, using microwave power with low frequency. The research team has identified three important steps in the plasma production: lightning-like gas breakdown, preliminary plasma production, and steady-state plasma. Blasting the microwaves without alignment of Heliotron J's magnetic field created a discharge that ripped electrons from their atoms and produced an especially dense plasma.

Chemistry: Biochemistry Energy: Nuclear Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New type of entanglement lets scientists 'see' inside nuclei      (via sciencedaily.com) 

Nuclear physicists have found a new way to see inside nuclei by tracking interactions between particles of light and gluons. The method relies on harnessing a new type of quantum interference between two dissimilar particles. Tracking how these entangled particles emerge from the interactions lets scientists map out the arrangement of gluons. This approach is unusual for making use of entanglement between dissimilar particles -- something rare in quantum studies.

Energy: Nuclear Physics: General Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Neutrinos made by a particle collider detected      (via sciencedaily.com) 

Physicists have detected neutrinos created by a particle collider. The discovery promises to deepen scientists' understanding of the subatomic particles, which were first spotted in 1956 and play a key role in the process that makes stars burn.

Chemistry: General Engineering: Biometric
Published

New research suggests peer-advisor relationship is key to success      (via sciencedaily.com) 

Collaborative research across the country has shown that strengthening the relationship between the student and advisor can increase retention rates in engineering doctoral studies.

Engineering: Biometric
Published

Study highlights complicated relationship between AI and law enforcement      (via sciencedaily.com) 

A recent study that examined the relationship between artificial intelligence (AI) and law enforcement underscores both the need for law enforcement agencies to be involved in the development of public policies regarding AI -- such as regulations governing autonomous vehicles -- and the need for law enforcement officers to better understand the limitations and ethical challenges of AI technologies.

Chemistry: Biochemistry Chemistry: General Energy: Nuclear Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Nitrate can release uranium into groundwater      (via sciencedaily.com) 

A team has experimentally confirmed that nitrate, a compound common in fertilizers and animal waste, can help transport naturally occurring uranium from the underground to groundwater. The new research backs a previous study showing that aquifers contaminated with high levels of nitrate -- including the High Plains Aquifer residing beneath Nebraska -- also contain uranium concentrations far exceeding a threshold set by the Environmental Protection Agency. Uranium concentrations above that EPA threshold have been shown to cause kidney damage in humans, especially when regularly consumed via drinking water.

Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: General Space: Structures and Features
Published

Scientists find a common thread linking subatomic color glass condensate and massive black holes      (via sciencedaily.com) 

Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.

Energy: Nuclear
Published

Better simulations of neutron scattering      (via sciencedaily.com) 

Tripoli-4® is a tool used by researchers to simulate the behaviors of interacting neutrons in 3D space. Recently, researchers have developed eTLE: a next-event simulator which aims to increase Tripoli-4®'s precision using Monte Carlo simulations. New research implements and validates eTLE's reliability.

Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hitting nuclei with light may create fluid primordial matter      (via sciencedaily.com) 

A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.

Energy: Nuclear Physics: General Physics: Quantum Physics
Published

Clear sign that quark-gluon plasma production 'turns off' at low energy      (via sciencedaily.com) 

Physicists report new evidence that production of an exotic state of matter in collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) can be 'turned off' by lowering the collision energy. The findings will help physicists map out the conditions of temperature and density under which the exotic matter, known as a quark-gluon plasma (QGP), can exist and identify key features of the phases of nuclear matter.

Energy: Nuclear Physics: General
Published

Scientists identify new mechanism of corrosion      (via sciencedaily.com) 

It started with a mystery: How did molten salt breach its metal container? Understanding the behavior of molten salt, a proposed coolant for next-generation nuclear reactors and fusion power, is a question of critical safety for advanced energy production. The multi-institutional research team, co-led by Penn State, initially imaged a cross-section of the sealed container, finding no clear pathway for the salt appearing on the outside. The researchers then used electron tomography, a 3D imaging technique, to reveal the tiniest of connected passages linking two sides of the solid container. That finding only led to more questions for the team investigating the strange phenomenon.

Energy: Nuclear
Published

New superalloy could cut carbon emissions from power plants      (via sciencedaily.com) 

Researchers have shown that a new 3D-printed superalloy could help power plants generate more electricity while producing less carbon.

Computer Science: Quantum Computers Energy: Nuclear Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Engineers discover a new way to control atomic nuclei as 'qubits'      (via sciencedaily.com) 

Researchers propose a new approach to making qubits, the basic units in quantum computing, and controlling them to read and write data. The method is based on measuring and controlling the spins of atomic nuclei, using beams of light from two lasers of slightly different colors.

Energy: Nuclear Physics: Quantum Physics
Published

Amplified search for new forces      (via sciencedaily.com) 

In the search for new forces and interactions beyond the Standard Model, an international team of researchers has now taken a good step forward. The researchers are using an amplification technique based on nuclear magnetic resonance. They use their experimental setup to study a particular exotic interaction between spins: a parity-violating interaction mediated by a new hypothetical exchange particle, called a Z' boson, which exists in addition to the Z boson mediating the weak interaction in the standard Model.