Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Engineering: Biometric, Space: The Solar System
Published Study examines Earth and Mars to determine how climate change affects the paths of rivers



The study investigated why the paths of meandering rivers change over time and is a step toward understanding what the hydroclimate on Mars was like when there was still surface water.
Published New exoplanet discovery builds better understanding of planet formation


An international team of scientists have discovered an unusual Jupiter-sized planet orbiting a low-mass star called TOI-4860, located in the Corvus constellation.
Published James Webb Space Telescope captures stunning images of the Ring Nebula


NASA's James Webb Space Telescope has recorded breath-taking new images of the iconic Ring Nebula, also known as Messier 57.
Published Gravitational arcs in 'El Gordo' galaxy cluster


A new image of the galaxy cluster known as 'El Gordo' is revealing distant and dusty objects never seen before, and providing a bounty of fresh science. The infrared image displays a variety of unusual, distorted background galaxies that were only hinted at in previous Hubble Space Telescope images.
Published Dune patterns reveal environmental change on Earth and other planets



Researchers have analyzed the shifting patterns of entire dune fields on Earth and Mars, as seen from orbit, and found they are a direct signature of recent environmental change. This new tool can be applied anywhere with dunes, such as Mars, Titan, and Venus.
Published Earth's most ancient impact craters are disappearing



Earth's oldest craters could give scientists critical information about the structure of the early Earth and the composition of bodies in the solar system as well as help to interpret crater records on other planets. But geologists can't find them, and they might never be able to, according to a new study.
Published Sun 'umbrella' tethered to asteroid might help mitigate climate change



Earth is rapidly warming and scientists are developing a variety of approaches to reduce the effects of climate change. An astronomer has proposed a novel approach -- a solar shield to reduce the amount of sunlight hitting Earth, combined with a tethered, captured asteroid as a counterweight. Engineering studies using this approach could start now to create a workable design that could mitigate climate change within decades.
Published New clues on the source of the universe's magnetic fields


Researchers offer insight into the source of cosmic magnetic fields. The research team used models to show that magnetic fields may spontaneously arise in turbulent plasma. Their simulations showed that, in addition to generating new magnetic fields, the turbulence of those plasmas can also amplify magnetic fields once they've been generated, which helps explain how magnetic fields that originate on small scales can sometimes eventually reach to stretch across vast distances.
Published New algorithm ensnares its first 'potentially hazardous' asteroid


An asteroid discovery algorithm -- designed to uncover near-Earth asteroids for the Vera C. Rubin Observatory's upcoming 10-year survey of the night sky -- has identified its first 'potentially hazardous' asteroid, a term for space rocks in Earth's vicinity that scientists like to keep an eye on. The roughly 600-foot-long asteroid, designated 2022 SF289, was discovered during a test drive of the algorithm with the ATLAS survey in Hawaii. Finding 2022 SF289, which poses no risk to Earth for the foreseeable future, confirms that the next-generation algorithm, known as HelioLinc3D, can identify near-Earth asteroids with fewer and more dispersed observations than required by today's methods.
Published Engineering team uses diamond microparticles to create high security anti-counterfeit labels



Researchers have developed a pioneering technological solution that counterfeiters have no response to.
Published James Webb Space Telescope sees Jupiter moons in a new light


Last year, JWST made spectral observations of Ganymede and infrared observations of Io. Absorption lines of hydrogen peroxide at Ganymede's poles indicate radiolysis of water ice by charged particles funneled by the moon's magnetic field. Io had two major eruptions, one associated with a forbidden emission line of sulfur monoxide. The latter supports a theory that SO is produced at volcanic vents in a thin atmosphere that allows forbidden emission before collisions destroy the excited state.
Published Hubble sees evaporating planet getting the hiccups


A young planet whirling around a petulant red dwarf star is changing in unpredictable ways orbit-by-orbit. It is so close to its parent star that it experiences a consistent, torrential blast of energy, which evaporates its hydrogen atmosphere -- causing it to puff off the planet.
Published Using cosmic weather to study which worlds could support life


As the next generation of giant, high-powered observatories begin to come online, a new study suggests that their instruments may offer scientists an unparalleled opportunity to discern what weather may be like on far-away exoplanets.
Published In new space race, scientists propose geoarchaeology can aid in preserving space heritage


The material record that currently exists on the moon is rapidly becoming at risk of being destroyed if proper attention isn't paid during the new space era, scientists say. They propose a new scientific subfield: planetary geoarchaeology, the study of how cultural and natural processes on Earth's moon, on Mars and across the solar system may be altering, preserving or destroying the material record of space exploration.
Published Ancient, high-energy impacts could have fueled Venus volcanism



A team has modeled the early impact history of Venus to explain how Earth's sister planet has maintained a youthful surface despite lacking plate tectonics. The team compared the early collision histories of the two bodies and determined that Venus likely experienced higher-speed, higher-energy impacts creating a super-heated core that promoted extended volcanism and resurfaced the planet.
Published Galaxy J1135 reveals its water map


Researchers look at water in galaxies, its distribution and in particular its changes of state from ice to vapor, as important markers indicating areas of increased energy, in which black holes and stars are formed. A new study has now revealed the distribution of water within the J1135 galaxy, which is 12 billion light years away and formed when the Universe was a 'teenager', 1.8 billion years after the Big Bang . This water map, with unprecedented resolution, is the first ever to be obtained for such a remote galaxy. The map can help scientists to understand the physical processes taking place within J1135 and shed light on the dynamics, still partially unclear, surrounding the formation of stars, black holes and galaxies themselves.
Published Does this exoplanet have a sibling sharing the same orbit?


Astronomers have found the possible 'sibling' of a planet orbiting a distant star. The team has detected a cloud of debris that might be sharing this planet's orbit and which, they believe, could be the building blocks of a new planet or the remnants of one already formed. If confirmed, this discovery would be the strongest evidence yet that two exoplanets can share one orbit.
Published Unusual white dwarf star is made of hydrogen on one side and helium on the other



In a first for white dwarfs, the burnt-out cores of dead stars, astronomers have discovered that at least one member of this cosmic family is two faced. One side of the white dwarf is composed of hydrogen, while the other is made up of helium.
Published Astronomers discover striking evidence of 'unusual' stellar evolution


Astronomers have found evidence that some stars boast unexpectedly strong surface magnetic fields, a discovery that challenges current models of how they evolve.
Published Giant swirling waves at edge of Jupiter's magnetosphere


A team has found that NASA's Juno spacecraft orbiting Jupiter frequently encounters giant swirling waves at the boundary between the solar wind and Jupiter's magnetosphere. The waves are an important process for transferring energy and mass from the solar wind, a stream of charged particles emitted by the Sun, to planetary space environments.