Showing 20 articles starting at article 701
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Engineering: Biometric
Published Overcoming the challenges to synthesising iron--sulfur proteins outside the glovebox


Iron--sulfur (Fe--S) proteins, essential to all life forms, are difficult to synthesise due to the complicated molecular machinery involved and sensitivity of Fe--S clusters to oxygen. In a new study, a team of researchers devised an innovative protocol for synthesising mature Fe--S proteins, by bringing together a recombinant sulfur assimilation (SUF) system and an oxygen-scavenging system, thereby, paving the way for new technologies and a better understanding of the evolution of life.
Published A first for ferrocene: Organometallic capsule with unusual charge-transfer interactions


An organometallic capsule that can reversibly assemble and disassemble in response to chemical stimuli was recently developed by chemists. Comprising ferrocene-based bent amphiphiles, this new capsule can act as a host for various types of guest molecules, such as electron acceptors and dyes. Thanks to the controllable release of its cargo, the capsule would find applications in catalysis, medicine, and biotechnology.
Published Direct power generation from methylcyclohexane using solid oxide fuel cells



Methylcyclohexane is very promising as a hydrogen carrier that can safely and efficiently transport and store hydrogen. However, the dehydrogenation process using catalysts has issues due to its durability and large energy loss. Recently, researchers have succeeded in using solid oxide fuel cells to generate electricity directly from methylcyclohexane and recover toluene for reuse. This research is expected to not only reduce energy requirements but also explore new chemical synthesis by fuel cells.
Published Enhanced chemical weathering: A solution to the climate crisis?



Could blending of crushed rock with arable soil lower global temperatures? Researchers study global warming events from 40 and 56 million years ago to find answers.
Published Engineering team uses diamond microparticles to create high security anti-counterfeit labels



Researchers have developed a pioneering technological solution that counterfeiters have no response to.
Published Researchers visualize activity of CRISPR genetic scissors



Scientists have developed a new method to measure the smallest twists and torques of molecules within milliseconds. The method makes it possible to track the gene recognition of CRISPR-Cas protein complexes, also known as 'genetic scissors', in real time and with the highest resolution. With the data obtained, the recognition process can be accurately characterized and modeled to improve the precision of the genetic scissors.
Published Don't wait, desalinate: A new approach to water purification



A water purification system separates out salt and other unnecessary particles with an electrified version of dialysis. Successfully applied to wastewater with planned expansion into rivers and seas, the method saves money and saps 90% less energy than its counterparts.
Published First detection of crucial carbon molecule



Scientists detect a new carbon compound in space for the first time. Known as methyl cation (pronounced cat-eye-on) (CH3+), the molecule is important because it aids the formation of more complex carbon-based molecules. Methyl cation was detected in a young star system, with a protoplanetary disk, known as d203-506, which is located about 1,350 light-years away in the Orion Nebula.
Published Towards efficient lithium--air batteries with solution plasma-based synthesis of perovskite hydroxide catalysts



CoSn(OH)6 (CSO) is an effective oxygen evolution reaction (OER) catalyst, necessary for developing next-generation lithium -- air batteries. However, current methods of synthesizing CSO are complicated and slow. Recently, an international research team synthesized CSO in a single step within 20 minutes using solution plasma to generate CSO nanocrystals with excellent OER catalytic properties. Their findings could boost the manufacturing of high energy density batteries.
Published Surprise! Weaker bonds can make polymers stronger



Chemists discovered a new way to make polymers stronger: introduce a few weaker bonds into the material. Working with polyacrylate elastomers, they could increase the materials' resistance to tearing up to tenfold by using a weaker type of crosslinker to join some of the polymer building blocks.
Published Making the most of minuscule metal mandalas



To unveil the previously elusive behavior and stability of complex metal compounds found in aqueous solutions called 'POMs', researchers have created a speciation atlas. This achievement has the potential to drive new discoveries and advancements in fields like catalysis, medicine, and beyond.
Published Rain gardens could save salmon from toxic tire chemicals



Specially designed gardens could reduce the amount of a toxic chemical associated with tires entering our waterways by more than 90 per cent, new research shows.
Published Biodegradable gel shows promise for cartilage regeneration



A gel that combines both stiffness and toughness is a step forward in the bid to create biodegradable implants for joint injuries, according to new research. Mimicking articular cartilage, found in our knee and hip joints, is challenging. This cartilage is key to smooth joint movement, and damage to it can cause pain, reduce function, and lead to arthritis. One potential solution is to implant artificial scaffolds made of proteins that help the cartilage regenerate itself as the scaffold biodegrades. How well the cartilage regenerates is linked to how well a scaffold can mimic the biological properties of cartilage, and to date, researchers have struggled to combine the seemingly incompatible properties of stiffness and toughness. Now, new research outlines a method to marry these properties in a biodegradable gel.
Published Clean, sustainable fuels made 'from thin air' and plastic waste



Researchers have demonstrated how carbon dioxide can be captured from industrial processes -- or even directly from the air -- and transformed into clean, sustainable fuels using just the energy from the Sun.
Published To boost supply chains, scientists are looking at ways to recover valuable materials from water



Researchers are exploring the different ways of harvesting materials from water.
Published Nanomaterials: 3D printing of glass without sintering



A new process enables printing of nanometer-scale quartz glass structures directly onto semiconductor chips. A hybrid organic-inorganic polymer resin is used as feedstock material for 3D printing of silicon dioxide. Since the process works without sintering, the required temperatures are significantly lower. Simultaneously, increased resolution enables visible-light nanophotonics.
Published A 'pinch' of mineral salts helps the noncaloric sweeteners go down



Perfect noncaloric replacements for sugar and high fructose corn syrup just don't exist yet. For example, some alternatives have a lingering sweet aftertaste and lack a sugar-like mouthfeel, leaving some consumers unsatisfied. Now, researchers propose adding blends of nutritionally important mineral salts to make noncaloric sweeteners seem more like the real thing. Taste-testers indicated that these blends gave zero- and low-calorie drinks a better flavor.
Published Photosynthesis, key to life on Earth, starts with a single photon



A cutting-edge experiment has revealed the quantum dynamics of one of nature's most crucial processes.
Published Preserving forests to protect deep soil from warming



An innovative, decade-long experiment in the foothills of California's Sierra Nevada mountains shows carbon stocks buried deep underground are vulnerable to climate change. The findings have implications for mitigating global warming through the natural carbon sinks provided by soil and forests which capture 25% of all carbon emissions.
Published Aluminium-ion batteries with improved storage capacity



Scientists develop positive electrode material using an organic redox polymer based on phenothiazine. Aluminium-ion batteries containing this material stored an unprecedented 167 milliampere hours per gram, outperforming batteries using graphite as electrode material. Aluminium-ion batteries are considered a promising alternative to conventional batteries that use scarce raw materials such as lithium.